You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am getting the below error though cuda is already installed in my system.
`
(vitis-ai-pytorch) Vitis-AI /workspace/KV260_Vitis_AI_examples/mnist_pyt/files > nvidia-smi
Wed Mar 9 07:31:47 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.103.01 Driver Version: 470.103.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K20c Off | 00000000:83:00.0 Off | 0 |
| 42% 49C P0 49W / 225W | 0MiB / 4743MiB | 68% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K20c Off | 00000000:84:00.0 Off | 0 |
| 41% 54C P0 56W / 225W | 1210MiB / 4743MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+`
I have gpu builded vitis-ai repo.
You have 2 CUDA devices available
Device 0 : Tesla K20c
Device 1 : Tesla K20c
Selecting device 0..
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz to ./build/dataset/MNIST/raw/train-images-idx3-ubyte.gz
9920512it [00:04, 2146323.53it/s]
Extracting ./build/dataset/MNIST/raw/train-images-idx3-ubyte.gz to ./build/dataset/MNIST/raw
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz to ./build/dataset/MNIST/raw/train-labels-idx1-ubyte.gz
32768it [00:01, 19985.86it/s]
Extracting ./build/dataset/MNIST/raw/train-labels-idx1-ubyte.gz to ./build/dataset/MNIST/raw
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz to ./build/dataset/MNIST/raw/t10k-images-idx3-ubyte.gz
1654784it [00:08, 185356.98it/s]
Extracting ./build/dataset/MNIST/raw/t10k-images-idx3-ubyte.gz to ./build/dataset/MNIST/raw
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz to ./build/dataset/MNIST/raw/t10k-labels-idx1-ubyte.gz
8192it [00:01, 6238.02it/s]
Extracting ./build/dataset/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./build/dataset/MNIST/raw
Processing...
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torchvision/datasets/mnist.py:480: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /opt/conda/conda-bld/pytorch_1607370120218/work/torch/csrc/utils/tensor_numpy.cpp:141.)
return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)
Done!
Epoch 1
Traceback (most recent call last):
File "train.py", line 131, in
run_main()
File "train.py", line 124, in run_main
train_test(args.build_dir, args.batchsize, args.learnrate, args.epochs)
File "train.py", line 89, in train_test
train(model, device, train_loader, optimizer, epoch)
File "/workspace/KV260_Vitis_AI_examples/mnist_pyt/files/common.py", line 63, in train
x = model(data)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/workspace/KV260_Vitis_AI_examples/mnist_pyt/files/common.py", line 49, in forward
x = self.network(x)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/container.py", line 117, in forward
input = module(input)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 423, in forward
return self._conv_forward(input, self.weight)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 420, in _conv_forward
self.padding, self.dilation, self.groups)
RuntimeError: CUDA error: no kernel image is available for execution on the device
`
The text was updated successfully, but these errors were encountered:
I am getting the below error though cuda is already installed in my system.
`
(vitis-ai-pytorch) Vitis-AI /workspace/KV260_Vitis_AI_examples/mnist_pyt/files > nvidia-smi
Wed Mar 9 07:31:47 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.103.01 Driver Version: 470.103.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K20c Off | 00000000:83:00.0 Off | 0 |
| 42% 49C P0 49W / 225W | 0MiB / 4743MiB | 68% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K20c Off | 00000000:84:00.0 Off | 0 |
| 41% 54C P0 56W / 225W | 1210MiB / 4743MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+`
I have gpu builded vitis-ai repo.
`(vitis-ai-pytorch) Vitis-AI /workspace/KV260_Vitis_AI_examples/mnist_pyt/files > python -u train.py -d ${BUILD} 2>&1 | tee ${LOG}/train.log
PyTorch version : 1.7.1
3.6.15 | packaged by conda-forge | (default, Dec 3 2021, 18:49:41)
[GCC 9.4.0]
Command line options:
--build_dir : ./build
--batchsize : 100
--learnrate : 0.001
--epochs : 3
You have 2 CUDA devices available
Device 0 : Tesla K20c
Device 1 : Tesla K20c
Selecting device 0..
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz to ./build/dataset/MNIST/raw/train-images-idx3-ubyte.gz
9920512it [00:04, 2146323.53it/s]
Extracting ./build/dataset/MNIST/raw/train-images-idx3-ubyte.gz to ./build/dataset/MNIST/raw
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz to ./build/dataset/MNIST/raw/train-labels-idx1-ubyte.gz
32768it [00:01, 19985.86it/s]
Extracting ./build/dataset/MNIST/raw/train-labels-idx1-ubyte.gz to ./build/dataset/MNIST/raw
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz to ./build/dataset/MNIST/raw/t10k-images-idx3-ubyte.gz
1654784it [00:08, 185356.98it/s]
Extracting ./build/dataset/MNIST/raw/t10k-images-idx3-ubyte.gz to ./build/dataset/MNIST/raw
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz to ./build/dataset/MNIST/raw/t10k-labels-idx1-ubyte.gz
8192it [00:01, 6238.02it/s]
Extracting ./build/dataset/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./build/dataset/MNIST/raw
Processing...
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torchvision/datasets/mnist.py:480: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /opt/conda/conda-bld/pytorch_1607370120218/work/torch/csrc/utils/tensor_numpy.cpp:141.)
return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)
Done!
Epoch 1
Traceback (most recent call last):
File "train.py", line 131, in
run_main()
File "train.py", line 124, in run_main
train_test(args.build_dir, args.batchsize, args.learnrate, args.epochs)
File "train.py", line 89, in train_test
train(model, device, train_loader, optimizer, epoch)
File "/workspace/KV260_Vitis_AI_examples/mnist_pyt/files/common.py", line 63, in train
x = model(data)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/workspace/KV260_Vitis_AI_examples/mnist_pyt/files/common.py", line 49, in forward
x = self.network(x)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/container.py", line 117, in forward
input = module(input)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 423, in forward
return self._conv_forward(input, self.weight)
File "/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 420, in _conv_forward
self.padding, self.dilation, self.groups)
RuntimeError: CUDA error: no kernel image is available for execution on the device
`
The text was updated successfully, but these errors were encountered: