-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
128 lines (105 loc) · 4.16 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os, time
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
from operator import add
import numpy as np
from glob import glob
import cv2
from tqdm import tqdm
import imageio
import torch
from model import TransRUPNet
from utils import create_dir, seeding
from utils import calculate_metrics
from train import load_data
from metrics import hd_dist
def calculate_hd(y_true, y_pred):
y_true = y_true[0][0].detach().cpu().numpy()
y_pred = y_pred[0][0].detach().cpu().numpy()
y_pred = y_pred > 0.5
y_pred = y_pred.astype(np.uint8)
y_true = y_true > 0.5
y_true = y_true.astype(np.uint8)
return hd_dist(y_true, y_pred)
def evaluate(model, save_path, test_x, test_y, size):
metrics_score = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
time_taken = []
for i, (x, y) in tqdm(enumerate(zip(test_x, test_y)), total=len(test_x)):
name = y.split("/")[-1].split(".")[0]
""" Image """
image = cv2.imread(x, cv2.IMREAD_COLOR)
image = cv2.resize(image, size)
save_img = image
image = np.transpose(image, (2, 0, 1))
image = image/255.0
image = np.expand_dims(image, axis=0)
image = image.astype(np.float32)
image = torch.from_numpy(image)
image = image.to(device)
""" Mask """
mask = cv2.imread(y, cv2.IMREAD_GRAYSCALE)
mask = cv2.resize(mask, size)
save_mask = mask
save_mask = np.expand_dims(save_mask, axis=-1)
save_mask = np.concatenate([save_mask, save_mask, save_mask], axis=2)
mask = np.expand_dims(mask, axis=0)
mask = mask/255.0
mask = np.expand_dims(mask, axis=0)
mask = mask.astype(np.float32)
mask = torch.from_numpy(mask)
mask = mask.to(device)
with torch.no_grad():
""" FPS calculation """
start_time = time.time()
y_pred = model(image)
y_pred = torch.sigmoid(y_pred)
end_time = time.time() - start_time
time_taken.append(end_time)
""" Evaluation metrics """
score = calculate_metrics(mask, y_pred)
hd = calculate_hd(mask, y_pred)
score.append(hd)
metrics_score = list(map(add, metrics_score, score))
""" Predicted Mask """
y_pred = y_pred[0].cpu().numpy()
y_pred = np.squeeze(y_pred, axis=0)
y_pred = y_pred > 0.5
y_pred = y_pred.astype(np.int32)
y_pred = y_pred * 255
y_pred = np.array(y_pred, dtype=np.uint8)
y_pred = np.expand_dims(y_pred, axis=-1)
y_pred = np.concatenate([y_pred, y_pred, y_pred], axis=2)
""" Save the image - mask - pred """
line = np.ones((size[0], 10, 3)) * 255
cat_images = np.concatenate([save_img, line, save_mask, line, y_pred], axis=1)
cv2.imwrite(f"{save_path}/joint/{name}.jpg", cat_images)
cv2.imwrite(f"{save_path}/mask/{name}.jpg", y_pred)
jaccard = metrics_score[0]/len(test_x)
f1 = metrics_score[1]/len(test_x)
recall = metrics_score[2]/len(test_x)
precision = metrics_score[3]/len(test_x)
acc = metrics_score[4]/len(test_x)
f2 = metrics_score[5]/len(test_x)
hd = metrics_score[6]/len(test_x)
print(f"Jaccard: {jaccard:1.4f} - F1: {f1:1.4f} - Recall: {recall:1.4f} - Precision: {precision:1.4f} - Acc: {acc:1.4f} - F2: {f2:1.4f} - HD: {hd:2.4f}")
mean_time_taken = np.mean(time_taken)
mean_fps = 1/mean_time_taken
print("Mean FPS: ", mean_fps)
if __name__ == "__main__":
""" Seeding """
seeding(42)
""" Load the checkpoint """
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TransRUPNet()
model = model.to(device)
checkpoint_path = "files/checkpoint.pth"
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
model.eval()
""" Test dataset """
path = "/home/Document/Datasets/Kvasir-SEG"
(train_x, train_y), (test_x, test_y) = load_data(path)
save_path = f"results/Kvasir-SEG"
for item in ["mask", "joint"]:
create_dir(f"{save_path}/{item}")
size = (256, 256)
create_dir(save_path)
evaluate(model, save_path, test_x, test_y, size)