Skip to content

Latest commit

 

History

History
83 lines (59 loc) · 1.86 KB

454.4sum_II.md

File metadata and controls

83 lines (59 loc) · 1.86 KB
  1. 4Sum II 难度 中等

https://leetcode-cn.com/problems/4sum-ii/

Given four integer arrays nums1, nums2, nums3, and nums4 all of length n, return the number of tuples (i, j, k, l) such that:

0 <= i, j, k, l < n
nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
 

Example 1:

Input: nums1 = [1,2], nums2 = [-2,-1], nums3 = [-1,2], nums4 = [0,2]
Output: 2
Explanation:
The two tuples are:
1. (0, 0, 0, 1) -> nums1[0] + nums2[0] + nums3[0] + nums4[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> nums1[1] + nums2[1] + nums3[0] + nums4[0] = 2 + (-1) + (-1) + 0 = 0

Example 2:

Input: nums1 = [0], nums2 = [0], nums3 = [0], nums4 = [0]
Output: 1
 

Constraints:

n == nums1.length
n == nums2.length
n == nums3.length
n == nums4.length
1 <= n <= 200
-228 <= nums1[i], nums2[i], nums3[i], nums4[i] <= 228

相关企业

  • 亚马逊 Amazon|8
  • Facebook|4
  • 字节跳动|3
  • 彭博 Bloomberg|2

相关标签

  • Array
  • Hash Table

相似题目

  • 4Sum 中等

Ask the count of a+b+c+d = target

折半搜索 split-half, O(n^k) to O(n^(k/2))

  • consider all combinations of a+b
  • then consider all combinations of -c-d among those a+b
  • this make O(n^4) reduce to O(n^2)

python

class Solution:
    def fourSumCount(self, nums1: List[int], nums2: List[int], nums3: List[int], nums4: List[int]) -> int:
        # 折半搜索 split-half O(n^k) -> O(n^(k/2)), O(n^4) -> O(n^2)
        # 先找出所有A+B的combinations, 从其中找-C-D的个数
        n1n2sum_combinations_ctr = dict() # {}
        for n1 in nums1:
            for n2 in nums2:
                n1n2sum_combinations_ctr[n1+n2] = n1n2sum_combinations_ctr.get(n1+n2, 0) + 1
        
        results_ctr = 0
        for n3 in nums3:
            for n4 in nums4:
                # among those A+B, how many equal to -C-D?
                results_ctr += n1n2sum_combinations_ctr.get(-n3-n4, 0)
        return results_ctr