From 9ba7f5ad6111a19a9918ebbb1f50c3d6419b17df Mon Sep 17 00:00:00 2001 From: DanSava Date: Tue, 19 Nov 2024 12:27:01 +0200 Subject: [PATCH] Use explicit everest config components when creating ropt config object --- src/everest/optimizer/everest2ropt.py | 91 +++++++++++++++++---------- 1 file changed, 57 insertions(+), 34 deletions(-) diff --git a/src/everest/optimizer/everest2ropt.py b/src/everest/optimizer/everest2ropt.py index 576d2b07101..c878375f048 100644 --- a/src/everest/optimizer/everest2ropt.py +++ b/src/everest/optimizer/everest2ropt.py @@ -19,6 +19,11 @@ from everest.config import ( ControlConfig, EverestConfig, + InputConstraintConfig, + ModelConfig, + ObjectiveFunctionConfig, + OptimizationConfig, + OutputConstraintConfig, SamplerConfig, ) from everest.config.control_variable_config import ( @@ -236,7 +241,7 @@ def _parse_controls(controls: Sequence[ControlConfig], ropt_config): ropt_config["gradient"]["samplers"] = sampler_indices -def _parse_objectives(ever_config: EverestConfig, ropt_config): +def _parse_objectives(objective_functions: List[ObjectiveFunctionConfig], ropt_config): names: List[str] = [] scales: List[float] = [] auto_scale: List[bool] = [] @@ -244,8 +249,7 @@ def _parse_objectives(ever_config: EverestConfig, ropt_config): transform_indices: List[int] = [] transforms: List = [] - ever_objs = ever_config.objective_functions or [] - for objective in ever_objs: + for objective in objective_functions: assert isinstance(objective.name, str) names.append(objective.name) weights.append(objective.weight or 1.0) @@ -286,9 +290,12 @@ def _parse_objectives(ever_config: EverestConfig, ropt_config): ropt_config["function_transforms"] = transforms -def _parse_input_constraints(ever_config: EverestConfig, ropt_config, formatted_names): - input_constrs = ever_config.input_constraints or None - if input_constrs is None: +def _parse_input_constraints( + input_constraints: Optional[List[InputConstraintConfig]], + ropt_config, + formatted_names, +): + if not input_constraints: return coefficients_matrix = [] @@ -301,7 +308,7 @@ def _add_input_constraint(rhs_value, coefficients, constraint_type): rhs_values.append(rhs_value) types.append(constraint_type) - for constr in input_constrs: + for constr in input_constraints: coefficients = [0.0] * len(formatted_names) for name, value in constr.weights.items(): coefficients[formatted_names.index(name)] = value @@ -323,9 +330,10 @@ def _add_input_constraint(rhs_value, coefficients, constraint_type): } -def _parse_output_constraints(ever_config: EverestConfig, ropt_config): - ever_constrs = ever_config.output_constraints or None - if ever_constrs is None: +def _parse_output_constraints( + output_constraints: Optional[List[OutputConstraintConfig]], ropt_config +): + if not output_constraints: return names: List[str] = [] @@ -345,7 +353,7 @@ def _add_output_constraint( auto_scale.append(constr.auto_scale or False) types.append(constraint_type) - for constr in ever_constrs: + for constr in output_constraints: target = constr.target upper_bound = constr.upper_bound lower_bound = constr.lower_bound @@ -377,11 +385,13 @@ def _add_output_constraint( } -def _parse_optimization(ever_config: EverestConfig, ropt_config): +def _parse_optimization( + ever_opt: Optional[OptimizationConfig], + has_output_constraints: bool, + ropt_config, +): ropt_config["optimizer"] = {} - - ever_opt = ever_config.optimization or None - if ever_opt is None: + if not ever_opt: return ropt_optimizer = ropt_config["optimizer"] @@ -416,9 +426,8 @@ def _parse_optimization(ever_config: EverestConfig, ropt_config): raise RuntimeError("Only one of 'options' and 'backend_options' allowed.") # The constraint_tolerance option is only used by Dakota: if backend == "dakota": - output_constraints = ever_config.output_constraints or None alg_const_tol = ever_opt.constraint_tolerance or None - if output_constraints is not None and alg_const_tol is not None: + if has_output_constraints and alg_const_tol is not None: options += [f"constraint_tolerance = {alg_const_tol}"] if options: ropt_optimizer["options"] = options @@ -477,9 +486,12 @@ def _parse_optimization(ever_config: EverestConfig, ropt_config): ropt_optimizer["split_evaluations"] = True -def _parse_model(ever_config: EverestConfig, ropt_config): - ever_model = ever_config.model or None - if ever_model is None: +def _parse_model( + ever_model: Optional[ModelConfig], + ever_opt: Optional[OptimizationConfig], + ropt_config, +): + if not ever_model: return ever_reals = ever_model.realizations or [] @@ -491,18 +503,17 @@ def _parse_model(ever_config: EverestConfig, ropt_config): "names": ever_reals, "weights": ever_reals_weights, } - ever_opt = ever_config.optimization or None - min_real_succ = ever_opt.min_realizations_success if ever_opt is not None else None + min_real_succ = ever_opt.min_realizations_success if ever_opt else None if min_real_succ is not None: ropt_config["realizations"]["realization_min_success"] = min_real_succ -def _parse_environment(ever_config: EverestConfig, ropt_config): - ropt_config["optimizer"]["output_dir"] = os.path.abspath( - ever_config.optimization_output_dir - ) - if ever_config.environment.random_seed is not None: - ropt_config["gradient"]["seed"] = ever_config.environment.random_seed +def _parse_environment( + optimization_output_dir: str, random_seed: Optional[int], ropt_config +): + ropt_config["optimizer"]["output_dir"] = os.path.abspath(optimization_output_dir) + if random_seed is not None: + ropt_config["gradient"]["seed"] = random_seed def everest2ropt(ever_config: EverestConfig) -> EnOptConfig: @@ -525,11 +536,23 @@ def everest2ropt(ever_config: EverestConfig) -> EnOptConfig: for control_name in ropt_config["variables"]["names"] ] - _parse_objectives(ever_config, ropt_config) - _parse_input_constraints(ever_config, ropt_config, control_names) - _parse_output_constraints(ever_config, ropt_config) - _parse_optimization(ever_config, ropt_config) - _parse_model(ever_config, ropt_config) - _parse_environment(ever_config, ropt_config) + _parse_objectives(ever_config.objective_functions, ropt_config) + _parse_input_constraints(ever_config.input_constraints, ropt_config, control_names) + _parse_output_constraints(ever_config.output_constraints, ropt_config) + _parse_optimization(ever_opt=ever_config.optimization, + has_output_constraints=ever_config.output_constraints is not None, + ropt_config=ropt_config) + _parse_model( + ever_model=ever_config.model, + ever_opt=ever_config.optimization, + ropt_config=ropt_config, + ) + _parse_environment( + optimization_output_dir=ever_config.optimization_output_dir, + random_seed=ever_config.environment.random_seed + if ever_config.environment + else None, + ropt_config=ropt_config, + ) return EnOptConfig.model_validate(ropt_config)