forked from smthemex/ComfyUI_SVFR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
242 lines (200 loc) · 9.23 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# !/usr/bin/env python
# -*- coding: UTF-8 -*-
import warnings
import os
import numpy as np
import torch
import torch.utils.checkpoint
from PIL import Image
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import CLIPVisionModelWithProjection
import torchvision.transforms as transforms
import torch.nn.functional as F
from torchvision.utils import save_image
import random
import cv2
# pipeline
from .src.pipelines.pipeline import LQ2VideoLongSVDPipeline
from .src.utils.util import save_videos_grid, seed_everything
from .src.models.id_proj import IDProjConvModel
from .src.models import model_insightface_360k
from .src.dataset.face_align.align import AlignImage
from .src.models.svfr_adapter.unet_3d_svd_condition_ip import UNet3DConditionSVDModel
from .src.dataset.dataset import get_affine_transform, mean_face_lm5p_256
warnings.filterwarnings("ignore")
def main_loader(weight_dtype, repo, unet_path, det_path, id_path, face_path,device):
vae = AutoencoderKLTemporalDecoder.from_pretrained(repo, subfolder="vae", variant="fp16")
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(repo, subfolder="scheduler")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(repo, subfolder="image_encoder", variant="fp16")
unet = UNet3DConditionSVDModel.from_pretrained(repo, subfolder="unet", variant="fp16")
align_instance = AlignImage(device, det_path=det_path)
import torch.nn as nn
class InflatedConv3d(nn.Conv2d):
def forward(self, x):
x = super().forward(x)
return x
# Add ref channel
old_weights = unet.conv_in.weight
old_bias = unet.conv_in.bias
new_conv1 = InflatedConv3d(
12,
old_weights.shape[0],
kernel_size=unet.conv_in.kernel_size,
stride=unet.conv_in.stride,
padding=unet.conv_in.padding,
bias=True if old_bias is not None else False,
)
param = torch.zeros((320, 4, 3, 3), requires_grad=True)
new_conv1.weight = torch.nn.Parameter(torch.cat((old_weights, param), dim=1))
if old_bias is not None:
new_conv1.bias = old_bias
unet.conv_in = new_conv1
unet.config["in_channels"] = 12
unet.config.in_channels = 12
id_linear = IDProjConvModel(in_channels=512, out_channels=1024).to(device=device)
# load pretrained weights
unet.load_state_dict(
torch.load(unet_path, map_location="cpu"),
strict=True,
)
id_linear.load_state_dict(
torch.load(id_path, map_location="cpu"),
strict=True,
)
net_arcface = model_insightface_360k.getarcface(face_path).eval().to(device=device)
image_encoder.to(weight_dtype)
vae.to(weight_dtype)
unet.to(weight_dtype)
id_linear.to(weight_dtype)
net_arcface.requires_grad_(False).to(weight_dtype)
pipe = LQ2VideoLongSVDPipeline(
unet=unet,
image_encoder=image_encoder,
vae=vae,
scheduler=val_noise_scheduler,
feature_extractor=None
)
pipe = pipe.to(device, dtype=unet.dtype)
return pipe, id_linear, net_arcface, align_instance
def main_sampler(pipe, align_instance, net_arcface, id_linear, save_dir, weight_dtype, seed, input_frames_pil, task_ids,
mask_array,
save_video, decode_chunk_size, noise_aug_strength, min_appearance_guidance_scale,
max_appearance_guidance_scale,
overlap, i2i_noise_strength, steps, n_sample_frames,device):
to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
seed_everything(seed)
if 2 in task_ids and isinstance(mask_array, np.ndarray):
white_positions = mask_array == 255
print('task_ids:', task_ids)
task_prompt = [0, 0, 0]
for i in range(3):
if i in task_ids:
task_prompt[i] = 1
print("task_prompt:", task_prompt)
files_prefix = ''.join(random.choice("0123456789") for _ in range(5))
video_name = f"infer_{files_prefix}"
# print(video_name)
if os.path.exists(os.path.join(save_dir, "result_frames", video_name[:-4])):
print(os.path.join(save_dir, "result_frames", video_name[:-4]))
# continue
# cap = decord.VideoReader(input_frames_pil, fault_tol=1)
total_frames = len(input_frames_pil)
T = total_frames #
print("total_frames:", total_frames)
step = 1
drive_idx_start = 0
drive_idx_list = list(range(drive_idx_start, drive_idx_start + T * step, step))
assert len(drive_idx_list) == T
imSameIDs = []
vid_gt = []
for i, drive_idx in enumerate(drive_idx_list):
imSameID = input_frames_pil[drive_idx]
image_array = np.array(imSameID)
if 2 in task_ids and isinstance(mask_array, np.ndarray):
image_array[white_positions] = [255, 255, 255] # mask for inpainting task
vid_gt.append(np.float32(image_array / 255.))
imSameIDs.append(imSameID)
vid_lq = [(torch.from_numpy(frame).permute(2, 0, 1) - 0.5) / 0.5 for frame in vid_gt] # torch.Size([3, 512, 512])
val_data = dict(
pixel_values_vid_lq=torch.stack(vid_lq, dim=0),
# pixel_values_ref_img=self.to_tensor(target_image),
# pixel_values_ref_concat_img=self.to_tensor(imSrc2),
task_ids=task_ids,
task_id_input=torch.tensor(task_prompt),
total_frames=total_frames,
)
window_overlap = 0
inter_frame_list = get_overlap_slide_window_indices(val_data["total_frames"], n_sample_frames, window_overlap)
lq_frames = val_data["pixel_values_vid_lq"]
task_ids = val_data["task_ids"]
task_id_input = val_data["task_id_input"]
height, width = val_data["pixel_values_vid_lq"].shape[-2:]
print("Generating the first clip...")
output = pipe(
lq_frames[inter_frame_list[0]].to(device).to(weight_dtype), # lq
None, # ref concat
torch.zeros((1, len(inter_frame_list[0]), 49, 1024)).to(device).to(weight_dtype), # encoder_hidden_states
task_id_input.to(device).to(weight_dtype),
height=height,
width=width,
num_frames=len(inter_frame_list[0]),
decode_chunk_size=decode_chunk_size,
noise_aug_strength=noise_aug_strength,
min_guidance_scale=min_appearance_guidance_scale,
max_guidance_scale=max_appearance_guidance_scale,
overlap=overlap,
frames_per_batch=len(inter_frame_list[0]),
num_inference_steps=steps,
i2i_noise_strength=i2i_noise_strength,
)
video = output.frames
ref_img_tensor = video[0][:, -1]
ref_img = (video[0][:, -1] * 0.5 + 0.5).clamp(0, 1) * 255.
ref_img = ref_img.permute(1, 2, 0).cpu().numpy().astype(np.uint8)
pts5 = align_instance(ref_img[:, :, [2, 1, 0]], maxface=True)[0][0]
warp_mat = get_affine_transform(pts5, mean_face_lm5p_256 * height / 256)
ref_img = cv2.warpAffine(np.array(Image.fromarray(ref_img)), warp_mat, (height, width), flags=cv2.INTER_CUBIC)
ref_img = to_tensor(ref_img).to(device).to(weight_dtype)
save_image(ref_img * 0.5 + 0.5, f"{save_dir}/ref_img_align.png")
ref_img = F.interpolate(ref_img.unsqueeze(0)[:, :, 0:224, 16:240], size=[112, 112], mode='bilinear')
_, id_feature_conv = net_arcface(ref_img)
id_embedding = id_linear(id_feature_conv)
print('Generating all video clips...')
video = pipe(
lq_frames.to(device).to(weight_dtype), # lq
ref_img_tensor.to(device).to(weight_dtype),
id_embedding.unsqueeze(1).repeat(1, len(lq_frames), 1, 1).to("cuda").to(weight_dtype), # encoder_hidden_states
task_id_input.to(device).to(weight_dtype),
height=height,
width=width,
num_frames=val_data["total_frames"], # frame_num,
decode_chunk_size=decode_chunk_size,
noise_aug_strength=noise_aug_strength,
min_guidance_scale=min_appearance_guidance_scale,
max_guidance_scale=max_appearance_guidance_scale,
overlap=overlap,
frames_per_batch=n_sample_frames,
num_inference_steps=steps,
i2i_noise_strength=i2i_noise_strength,
).frames
video = (video * 0.5 + 0.5).clamp(0, 1)
video = torch.cat([video.to(device=device)], dim=0).cpu() # torch.Size([1, 3, 160, 512, 512])
if save_video:
save_videos_grid(video, f"{save_dir}/{video_name[:-4]}_{seed}.mp4", n_rows=1, fps=25)
# if restore_frames:
# video = video.squeeze(0)
# os.makedirs(os.path.join(save_dir, "result_frames", f"{video_name[:-4]}_{seed}"),exist_ok=True)
# print(os.path.join(save_dir, "result_frames", video_name[:-4]))
# for i in range(video.shape[1]):
# save_frames_path = os.path.join(f"{save_dir}/result_frames", f"{video_name[:-4]}_{seed}", f'{i:08d}.png')
# save_image(video[:,i], save_frames_path)
return video.squeeze(0).permute(1, 2, 3, 0) # bcthw to B,H,W,C
def get_overlap_slide_window_indices(video_length, window_size, window_overlap):
inter_frame_list = []
for j in range(0, video_length, window_size - window_overlap):
inter_frame_list.append([e % video_length for e in range(j, min(j + window_size, video_length))])
return inter_frame_list