-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_gen_ver0.py
646 lines (551 loc) · 32.1 KB
/
data_gen_ver0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import numpy as np
import numpy.ma as ma
import seaborn as sns
import os as os
import operator as op
import pickle
import time
from numpy.fft import ifft2, fftshift
from itertools import product
from astropy.io import fits
from astropy.modeling.models import Gaussian2D
from astropy.modeling.fitting import LevMarLSQFitter
from astropy.convolution import interpolate_replace_nans, Gaussian2DKernel, convolve
from scipy.optimize import curve_fit, brent
from collections import defaultdict
sns.set_style('whitegrid')
sns.color_palette('colorblind')
def default_to_regular(d):
if isinstance(d, defaultdict):
d = {k: default_to_regular(v) for k, v in d.items()}
return d
def colourbar(mappable):
"""
:param mappable: a map axes object taken as input to apply a colourbar to
:return: Edits the figure and subplot to include a colourbar which is scaled to the map correctly
"""
from mpl_toolkits.axes_grid1 import make_axes_locatable
ax = mappable.axes
figure_one = ax.figure
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
return figure_one.colorbar(mappable, cax=cax, format='%g')
def fourier_gaussian_function(axis_one, axis_two, scale=1.0, sigma_x=1.0, sigma_y=1, theta=0):
xo = axis_one.shape[0] // 2
yo = axis_two.shape[1] // 2
if sigma_x == 0:
sigma_x = 1
if sigma_y == 0:
sigma_y = 1
sigma_x = 1 / sigma_x
sigma_y = 1 / sigma_y
a = np.cos(theta) ** 2 / (2 * sigma_x ** 2) + np.sin(theta) ** 2 / (2 * sigma_y ** 2)
b = -np.sin(2 * theta) / (4 * sigma_x ** 2) + np.sin(2 * theta) / (4 * sigma_y ** 2)
c = np.sin(theta) ** 2 / (2 * sigma_x ** 2) + np.cos(theta) ** 2 / (2 * sigma_y ** 2)
fourier_gaussian = scale * np.exp(
(-4 * np.pi ** 2 / (axis_one.shape[0] ** 2)) *
(a * (axis_one - xo) ** 2 +
2 * b * (axis_one - xo) * (axis_two - yo) +
c * (axis_two - yo) ** 2))
return fourier_gaussian
def gaussian_fit_ac(auto_correlation):
# figuring out where I need to clip to, realistically, this SHOULD be at the physical centre (200,200)
width = 7
y_max, x_max = np.where(auto_correlation == auto_correlation.max())
y_max, x_max = int(np.amax(y_max)), int(np.amax(x_max))
# Setting the middle auto_correlation point to be our estimated value of B for a better fit.
mask = np.zeros(auto_correlation.shape)
mask[y_max, x_max] = 1
ac_masked = ma.masked_array(auto_correlation, mask=mask)
# clipping map further to better fit a gaussian profile to it
auto_correlation = ac_masked[y_max - width:y_max + width + 1, x_max - width:x_max + width + 1]
# generating the gaussian to fit
x_mesh, y_mesh = np.meshgrid(np.arange(auto_correlation.shape[0]), np.arange(auto_correlation.shape[1]))
gauss_init = Gaussian2D(
amplitude=auto_correlation.max(),
x_mean=auto_correlation.shape[1] // 2, # location to start fitting gaussian
y_mean=auto_correlation.shape[0] // 2, # location to start fitting gaussian
)
fitting_gauss = LevMarLSQFitter() # Fitting method; Levenberg-Marquardt Least Squares algorithm
best_fit_gauss = fitting_gauss(gauss_init, x_mesh, y_mesh, auto_correlation) # The best fit for the map
gauss_model = best_fit_gauss(x_mesh, y_mesh) # the model itself (if we want to plot it
try:
ac_error = np.sqrt(np.diag(fitting_gauss.fit_info['param_cov']))
except ValueError:
ac_error = np.ones(10) * -5
amplitude = float(best_fit_gauss.amplitude.value)
amplitude_error = ac_error[0]
sigma_x = float(best_fit_gauss.x_stddev.value)
sigma_x_error = ac_error[3]
sigma_y = float(best_fit_gauss.y_stddev.value)
sigma_y_error = ac_error[4]
theta = float(best_fit_gauss.theta.value)
theta_error = ac_error[5]
return [[amplitude, sigma_x, sigma_y, theta],
[amplitude_error, sigma_x_error, sigma_y_error, theta_error]], gauss_model
def gaussian_fit_xc(x_correlation):
# import numpy as np
# from astropy.modeling.models import Gaussian2D
# from astropy.modeling.fitting import LevMarLSQFitter
# figuring out where i need to clip to
y_center = x_correlation.shape[0] // 2
x_center = x_correlation.shape[1] // 2 # centre of the Cross-Corr maps default: (200,200)
width = 7
y_max, x_max = np.where(x_correlation == x_correlation.max())
y_max = int(y_max)
x_max = int(x_max)
# clipping map further to better fit a gaussian profile to it
x_correlation = x_correlation[y_max - width:y_max + width + 1, x_max - width:x_max + width + 1]
# subtracting half the side to then add the mean values after
x_max -= x_correlation.shape[1] // 2
y_max -= x_correlation.shape[0] // 2
# generating the gaussian to fit.
x_mesh, y_mesh = np.meshgrid(np.arange(x_correlation.shape[0]), np.arange(x_correlation.shape[1]))
gauss_init = Gaussian2D(
amplitude=x_correlation.max(),
x_mean=np.where(x_correlation == x_correlation.max())[1], # location to start fitting gaussian
y_mean=np.where(x_correlation == x_correlation.max())[0], # location to start fitting gaussian
# fixed={}, # any fixed parameters
bounds={
# 'amplitude': (x_correlation.max() * 0.90, x_correlation.max() * 1.10),
'x_mean': (int(np.where(x_correlation == x_correlation.max())[1]) - 1,
int(np.where(x_correlation == x_correlation.max())[1]) + 1),
'y_mean': (int(np.where(x_correlation == x_correlation.max())[0]) - 1,
int(np.where(x_correlation == x_correlation.max())[0]) + 1)
}, # allowing var in amplitude to better fit gauss
)
fitting_gauss = LevMarLSQFitter() # Fitting method; Levenberg-Marquardt Least Squares algorithm
best_fit_gauss = fitting_gauss(gauss_init, x_mesh, y_mesh, x_correlation) # The best fit for the map
# now we can get the location of our peak fitted gaussian and add them back to get a total offset
y_max += best_fit_gauss.y_mean.value # Finding the distance from 0,0 to the centre gaussian
x_max += best_fit_gauss.x_mean.value # and y.
try:
x_correlation_error = np.sqrt(np.diag(fitting_gauss.fit_info['param_cov']))
except ValueError:
x_correlation_error = np.ones(10) * -5
offset = (x_center - x_max, y_center - y_max)
offset_err = (x_correlation_error[1], x_correlation_error[2])
return offset, offset_err
def correlate(epoch_1=None, epoch_2=None, clipped_side=400, clip_only=False, psd=False):
"""
:param epoch_1:
2-Dimensional numpy array. Default: None
When only epoch_1 is passed it is auto correlated with itself
:param epoch_2:
2-Dimensional numpy array. Default: None
When both epoch_1 and epoch_2 are passed the two arrays are cross correlated
:param clipped_side:
Integer. Default: 400.
The length of one side of the clipped array.
:param clip_only:
Boolean. Default: False
When True is passed to clip_only it will only clip epoch_1
:param psd:
Boolean. Default: False
When true is passed the power spectrum is returned
:return:
"""
from numpy.fft import fft2, ifft2, fftshift
if clip_only:
mid_map_x, mid_map_y = epoch_1.shape[1] // 2, epoch_1.shape[0] // 2
clipped_epoch = epoch_1[mid_map_y - clipped_side // 2:mid_map_y + clipped_side // 2 + 1,
mid_map_x - clipped_side // 2:mid_map_x + clipped_side // 2 + 1
]
return clipped_epoch
elif psd:
mid_map_x, mid_map_y = epoch_1.shape[1] // 2, epoch_1.shape[0] // 2
clipped_epoch = epoch_1[mid_map_y - clipped_side // 2:mid_map_y + clipped_side // 2 + 1,
mid_map_x - clipped_side // 2:mid_map_x + clipped_side // 2 + 1
]
psd = fft2(clipped_epoch) * fft2(clipped_epoch).conj()
return fftshift(psd)
elif epoch_1 is None:
raise Exception('You need to pass a 2D map for this function to work')
elif epoch_2 is None:
mid_map_x, mid_map_y = epoch_1.shape[1] // 2, epoch_1.shape[0] // 2
clipped_epoch = epoch_1[mid_map_y - clipped_side // 2:mid_map_y + clipped_side // 2 + 1,
mid_map_x - clipped_side // 2:mid_map_x + clipped_side // 2 + 1
]
ac = ifft2(fft2(clipped_epoch) * fft2(clipped_epoch).conj())
return fftshift(ac)
else:
mid_map_x_1, mid_map_y_1 = epoch_1.shape[1] // 2, epoch_1.shape[0] // 2
mid_map_x_2, mid_map_y_2 = epoch_2.shape[1] // 2, epoch_2.shape[0] // 2
clipped_epoch_1 = epoch_1[mid_map_y_1 - clipped_side // 2:mid_map_y_1 + clipped_side // 2 + 1,
mid_map_x_1 - clipped_side // 2:mid_map_x_1 + clipped_side // 2 + 1
]
clipped_epoch_2 = epoch_2[mid_map_y_2 - clipped_side // 2:mid_map_y_2 + clipped_side // 2 + 1,
mid_map_x_2 - clipped_side // 2:mid_map_x_2 + clipped_side // 2 + 1
]
x_correlation = ifft2(fft2(clipped_epoch_1) * fft2(clipped_epoch_2).conj())
return fftshift(x_correlation)
def f(independent, m, b):
"""
:param independent: independent variable
:param m: slope
:param b: intercept
:return: y: a quadratic
"""
dependent = m * independent ** 2 + b
return dependent
def f_linear(p, independent):
"""
:param independent: independent variable
:param p: fitting parameters
:return: y: a linear monomial
"""
dependent = p[0] * independent + p[1]
return dependent
def amp(epoch):
from numpy import sqrt
return sqrt(epoch.real ** 2 + epoch.imag ** 2)
def beam_fit(sigma, power_spectrum, required_length_scale):
from numpy import meshgrid, arange, sqrt
from numpy.fft import ifft2, fftshift
axis_1_size = axis_2_size = power_spectrum.shape[0]
axis_1, axis_2 = meshgrid(arange(axis_1_size), arange(axis_2_size))
numeric_gaussian = fourier_gaussian_function(axis_1, axis_2, sigma_x=sigma, sigma_y=sigma) # guess!
output_gaussian = amp(fftshift(ifft2(numeric_gaussian * numeric_gaussian * power_spectrum))) # guess amplitude
[[_, sigma_x, sigma_y, _], _], _ = gaussian_fit_ac(output_gaussian)
length_scale = sqrt(sigma_x * sigma_y)
dif = required_length_scale - length_scale
return abs(dif)
# + ===================== +
# | Root project location |
# + ===================== +
LOCAL_ROOT = '/home/cobr/Documents/jcmt-variability/'
ROOT = '/media/cobr/JCMT-TRANSIENT/'
# + ===================== +
# | Global parameters |
# + ===================== +
DIST = 7 # the distance used for linear fitting and gaussian fitting (use width = RADIUS*2 + 1)
length = 200 # The size we clip the reference matrix to. size MxM = length*2 x length*2
TEST = False # was i testing code?
kernel_sigma = 6 # for the Cross-Correlation High-Pass filtering
kernel = Gaussian2DKernel(x_stddev=kernel_sigma, y_stddev=kernel_sigma) # Gaussian Kernel for High-Pass filter
TX = 'wavelength: {:}, epoch: {:}, Pass: {:}, length_scale: {:}, required_length_scale: {:}\n' #print out string
REGIONS = {
'IC348': {'450': 5.7, '850': 5.9},
'NGC1333': {'450': 5.1, '850': 5.9},
'NGC2024': {'450': 7.8, '850': 10.7},
'NGC2071': {'450': 5.1, '850': 5.8},
'OMC23': {'450': 6.3, '850': 8.8},
'OPH_CORE': {'450': 7.2, '850': 9.7},
'SERPENS_MAIN': {'450': 5.3, '850': 6.9},
'SERPENS_SOUTH': {'450': 6.9, '850': 8.6}} # Dictionary of region and an ideal "beam" at both wavelenghts
tol = 0.05 # tolerance for beam convolution
wavelengths = ['450', '850']
data = defaultdict(dict)
for region in list(REGIONS.keys()):
"""
I used default dict to quickly circumvent "missing" data epochs,
so that it would default to a certain value if it was looked up.
"""
data[region] = defaultdict(dict)
data[region]['850'] = defaultdict(dict)
data[region]['850']['epoch'] = defaultdict(list)
data[region]['850']['dates'] = list() # to collect all of the dates in the data[region] set
data[region]['850']['JCMT_offset'] = defaultdict(str) # to use the date as the index
data[region]['850']['XC'] = defaultdict(dict)
data[region]['850']['XC']['offset'] = defaultdict(list)
data[region]['850']['XC']['offset_err'] = defaultdict(list)
data[region]['850']['linear'] = defaultdict(dict)
data[region]['850']['linear']['m'] = defaultdict(dict)
data[region]['850']['linear']['m_err'] = defaultdict(dict)
data[region]['850']['linear']['b'] = defaultdict(dict)
data[region]['850']['linear']['b_err'] = defaultdict(dict)
data[region]['850']['linear_new'] = defaultdict(list)
data[region]['850']['linear_new']['m'] = defaultdict(dict)
data[region]['850']['linear_new']['m_err'] = defaultdict(dict)
data[region]['850']['linear_new']['b'] = defaultdict(dict)
data[region]['850']['linear_new']['b_err'] = defaultdict(dict)
data[region]['850']['AC'] = defaultdict(dict)
data[region]['850']['AC']['amp'] = defaultdict(list)
data[region]['850']['AC']['amp_err'] = defaultdict(list)
data[region]['850']['AC']['sig_x'] = defaultdict(list)
data[region]['850']['AC']['sig_x_err'] = defaultdict(list)
data[region]['850']['AC']['sig_y'] = defaultdict(list)
data[region]['850']['AC']['sig_y_err'] = defaultdict(list)
data[region]['850']['AC']['theta'] = defaultdict(list)
data[region]['850']['AC']['theta_err'] = defaultdict(list)
data[region]['850']['AC_New'] = defaultdict(dict)
data[region]['850']['AC_New']['N'] = defaultdict(list)
data[region]['850']['AC_New']['sigma'] = defaultdict(list)
data[region]['850']['AC_New']['amp'] = defaultdict(list)
data[region]['850']['AC_New']['amp_err'] = defaultdict(list)
data[region]['850']['AC_New']['sig_x'] = defaultdict(list)
data[region]['850']['AC_New']['sig_x_err'] = defaultdict(list)
data[region]['850']['AC_New']['sig_y'] = defaultdict(list)
data[region]['850']['AC_New']['sig_y_err'] = defaultdict(list)
data[region]['850']['AC_New']['theta'] = defaultdict(list)
data[region]['850']['AC_New']['theta_err'] = defaultdict(list)
data[region]['450'] = defaultdict(dict)
data[region]['450']['epoch'] = defaultdict(list)
data[region]['450']['dates'] = list() # to collect all of the dates in the data[region] set
data[region]['450']['JCMT_offset'] = defaultdict(str) # to use the date as the index
data[region]['450']['XC'] = defaultdict(list)
data[region]['450']['XC']['offset'] = defaultdict(list)
data[region]['450']['XC']['offset_err'] = defaultdict(list)
data[region]['450']['linear'] = defaultdict(list)
data[region]['450']['linear']['m'] = defaultdict(dict)
data[region]['450']['linear']['m_err'] = defaultdict(dict)
data[region]['450']['linear']['b'] = defaultdict(dict)
data[region]['450']['linear']['b_err'] = defaultdict(dict)
data[region]['450']['linear_new'] = defaultdict(list)
data[region]['450']['linear_new']['m'] = defaultdict(dict)
data[region]['450']['linear_new']['m_err'] = defaultdict(dict)
data[region]['450']['linear_new']['b'] = defaultdict(dict)
data[region]['450']['linear_new']['b_err'] = defaultdict(dict)
data[region]['450']['AC'] = defaultdict(dict)
data[region]['450']['AC']['amp'] = defaultdict(int)
data[region]['450']['AC']['amp_err'] = defaultdict(int)
data[region]['450']['AC']['sig_x'] = defaultdict(int)
data[region]['450']['AC']['sig_x_err'] = defaultdict(int)
data[region]['450']['AC']['sig_y'] = defaultdict(int)
data[region]['450']['AC']['sig_y_err'] = defaultdict(int)
data[region]['450']['AC']['theta'] = defaultdict(int)
data[region]['450']['AC']['theta_err'] = defaultdict(int)
data[region]['450']['AC_New'] = defaultdict(dict)
data[region]['450']['AC_New']['N'] = defaultdict(int)
data[region]['450']['AC_New']['sigma'] = defaultdict(int)
data[region]['450']['AC_New']['amp'] = defaultdict(int)
data[region]['450']['AC_New']['amp_err'] = defaultdict(int)
data[region]['450']['AC_New']['sig_x'] = defaultdict(int)
data[region]['450']['AC_New']['sig_x_err'] = defaultdict(int)
data[region]['450']['AC_New']['sig_y'] = defaultdict(int)
data[region]['450']['AC_New']['sig_y_err'] = defaultdict(int)
data[region]['450']['AC_New']['theta'] = defaultdict(int)
data[region]['450']['AC_New']['theta_err'] = defaultdict(int)
TIME_START = time.time()
print(region+'\n'+'='*len(region))
with open('/home/cobr/Documents/jcmt-variability/log/{:}_BC.log'.format(region), 'w+') as LOG:
Dates850 = []
Dates450 = []
DataRoot = ROOT + region + "/A3_images/" # where all the data is stored
files = os.listdir(DataRoot) # listing all the files in root
files = sorted(files) # sorting to ensure we select the correct first region
MetaData850 = np.loadtxt(ROOT + region + '/A3_images_cal/' + region + '_850_EA3_cal_metadata.txt',
dtype=str)
MetaData450 = np.loadtxt(ROOT + region + '/A3_images_cal_450/' + region + '_450_EA3_cal_metadata.txt',
dtype=str)
FN850 = MetaData850.T[1] # filename of the 850 metadata files (ordered)
FN450 = MetaData450.T[1] # filename of the 450 metadata files (ordered)
Dates850.extend([''.join(d[1:].split('-')) for d in MetaData850.T[2]]) # dates of all the 850 metadata files
Dates450.extend([''.join(d[1:].split('-')) for d in MetaData450.T[2]]) # dates of all the 450 metadata files
for wavelength in wavelengths:
print(wavelength)
if wavelength in files[0]:
FirstEpochName = files[0] # the name of the first epoch
elif wavelength in files[1]:
FirstEpochName = files[1]
else:
print('Issue with first epoch...')
break
"""
First epoch data for cross-correlation, applying high-pass filter as well
"""
FirstEpoch = fits.open(DataRoot + '/' + FirstEpochName)
FirstEpochData = FirstEpoch[0].data[0] # Numpy data array for the first epoch
FirstEpochCentre = np.array(
[FirstEpoch[0].header['CRPIX1'], FirstEpoch[0].header['CRPIX2']]) # loc of actual centre
# middle of the map of the first epoch
FED_MidMapX = FirstEpochData.shape[1] // 2
FED_MidMapY = FirstEpochData.shape[0] // 2
FirstEpochVec = np.array([FirstEpochCentre[0] - FED_MidMapX,
FirstEpochCentre[1] - FED_MidMapY])
FirstEpochData = FirstEpochData[
FED_MidMapY - length:FED_MidMapY + length + 1,
FED_MidMapX - length:FED_MidMapX + length + 1]
FirstEpochData_smooth = convolve(FirstEpochData, kernel)
FirstEpochData -= FirstEpochData_smooth
Files = []
for fn in files:
SUCCESS = False # was the numerical brent method successful? assume no to begin.
if wavelength in fn:
Files.append(fn)
FilePath = ROOT + region + "/A3_images/" + fn
if os.path.isfile(FilePath) and (fn[-4:].lower() == ('.fit' or '.fits')):
hdul = fits.open(FilePath) # opening the file in astropy
date = str(hdul[0].header['UTDATE']) # extracting the date from the header
date += '-' + str(hdul[0].header['OBSNUM'])
print('Epoch: {:14}'.format(date))
data[region][wavelength]['dates'].append(date)
centre = (hdul[0].header['CRPIX1'], hdul[0].header['CRPIX2']) # JCMT's alleged centre is
Vec = np.array([centre[0] - (hdul[0].shape[2] // 2),
centre[1] - (hdul[0].shape[1] // 2)])
JCMT_offset = FirstEpochVec - Vec # JCMT offset from headers
data[region][wavelength]['JCMT_offset'][date] = JCMT_offset # used for accessing data later.
hdu = hdul[0] # a nice compact way to store the data for later.
Epoch = hdu.data[0] # map of the region
Map_of_Region = interpolate_replace_nans(
correlate(Epoch, clip_only=True),
Gaussian2DKernel(5)
) # replacing any NaNs from steve's smoothing/filtering using interpolation
Map_of_Region_smooth = convolve(Map_of_Region, kernel) # making smoothed map
Map_of_RegionXC = Map_of_Region - Map_of_Region_smooth # High-pass filter!
"""
NOTE:
In the following I take the Real part of my correlation;
Python will cast the FFT to a complex number, and then when inverting w/
IFFT the data remains complex. Since we pass Real data into the FFT, and do not synthetically
alter the imaginary parts, we ***should*** expect real valued Cross/Auto correlations.
"""
XC = correlate(epoch_1=Map_of_RegionXC, epoch_2=FirstEpochData).real
PS = correlate(Map_of_Region, psd=True)
AC = correlate(Map_of_Region).real # auto correlation of the map
try:
XC_Offset, XC_Error = gaussian_fit_xc(XC)
except ValueError:
XC_Offset = (-1, -1)
XC_Error = (-1, -1)
[[AMP, SIGX, SIGY, THETA], [AMP_ERR, SIGX_ERR, SIGY_ERR, THETA_ERR]], _ = gaussian_fit_ac(AC)
# Above, the _ is trashing a the model that is returned from my gaussian fitting function
data[region][wavelength]['XC']['offset'][date] = (XC_Offset[0], XC_Offset[1])
data[region][wavelength]['XC']['offset_err'][date] = (XC_Error[0], XC_Error[1])
data[region][wavelength]['AC']['amp'][date] = AMP
data[region][wavelength]['AC']['amp_err'][date] = AMP_ERR
data[region][wavelength]['AC']['sig_x'][date] = SIGX
data[region][wavelength]['AC']['sig_x_err'][date] = SIGX_ERR
data[region][wavelength]['AC']['sig_y'][date] = SIGY
data[region][wavelength]['AC']['sig_y_err'][date] = SIGY_ERR
data[region][wavelength]['AC']['theta'][date] = THETA
data[region][wavelength]['AC']['theta_err'][date] = THETA_ERR
Clipped_Map_of_Region_LENGTH = np.arange(0, Map_of_Region.shape[0])
# creating a set of all possible index locations within the map
loc = list(product(Clipped_Map_of_Region_LENGTH, Clipped_Map_of_Region_LENGTH))
MidMapX = AC.shape[1] // 2 # middle of the map x
MidMapY = AC.shape[0] // 2 # and y
radius, AC_pows = [], []
for idx in loc: # Determining the power at a certain radius
r = ((idx[0] - MidMapX) ** 2 + (idx[1] - MidMapY) ** 2) ** (1 / 2)
AC_pow = AC[idx[0], idx[1]].real
radius.append(r)
AC_pows.append(AC_pow)
radius, AC_pows = zip(*sorted(list(zip(radius, AC_pows)), key=op.itemgetter(0)))
radius = np.array(radius)
AC_pows = np.array(AC_pows)
"""
fitting the first N=num points related to being at or withing a distance=DIST.
This is the source of the parameters:
m
b
and their associated errors.
"""
num = len(radius[np.where(radius <= DIST)])
opt_fit_AC, cov_mat_AC = curve_fit(f, radius[1:num], AC_pows[1:num])
err = np.sqrt(np.diag(cov_mat_AC))
M = opt_fit_AC[0]
M_err = err[0]
B = opt_fit_AC[1]
B_err = err[1]
data[region][wavelength]['linear']['m'][date] = M
data[region][wavelength]['linear']['m_err'][date] = M_err
data[region][wavelength]['linear']['b'][date] = B
data[region][wavelength]['linear']['b_err'][date] = B_err
"""
Now we get into the Beam Convolution portion.
I use a brent-dekker numerical method implemented by scipy to find the sigma required to
convolve an epoch to the desired final length scale as determined at the beginning of this
file in the REGIONS dictionary.
"""
FINAL_LENGTH_SCALE = float(REGIONS[region][wavelength])
Length_Scale = np.sqrt(SIGX*SIGY)
print('Original Length Scale: {: 0.2f}'.format(Length_Scale))
if (Length_Scale > FINAL_LENGTH_SCALE) or ((FINAL_LENGTH_SCALE - Length_Scale) <= tol):
# if the length scale is within tol or above the final length scale it is ignored.
Sigma_Opt = 0
N = 0
data[region][wavelength]['AC_New']['sigma'][date] = Sigma_Opt
data[region][wavelength]['AC_New']['N'][date] = N
data[region][wavelength]['AC_New']['amp'][date] = AMP
data[region][wavelength]['AC_New']['amp_err'][date] = AMP_ERR
data[region][wavelength]['AC_New']['sig_x'][date] = SIGX
data[region][wavelength]['AC_New']['sig_x_err'][date] = SIGX_ERR
data[region][wavelength]['AC_New']['sig_y'][date] = SIGY
data[region][wavelength]['AC_New']['sig_y_err'][date] = SIGY_ERR
data[region][wavelength]['AC_New']['theta'][date] = THETA
data[region][wavelength]['AC_New']['theta_err'][date] = THETA_ERR
FLS = Length_Scale
SUCCESS = True
else:
# if the difference in length scale is below the tolerance it is put to the test!
# IDK who brent is, but they seem like a great person to get to the bottom of things.
# (minimization puns anyone?)
x_size = y_size = PS.shape[0]
x, y = np.meshgrid(np.arange(x_size), np.arange(y_size))
Sigma_Opt, _, N, _ = brent(beam_fit,
args=(PS, FINAL_LENGTH_SCALE),
tol=tol,
brack=(0.01, 0.5 * FINAL_LENGTH_SCALE),
full_output=True)
Sigma_Opt = abs(Sigma_Opt)
if N < 15:
SUCCESS = True
print('Brent: Sigma {: 0.2f} N {:d}'.format(Sigma_Opt, N))
Sol_G2d = fourier_gaussian_function(x, y, sigma_x=Sigma_Opt, sigma_y=Sigma_Opt)
try:
AC = amp(fftshift(ifft2(Sol_G2d * Sol_G2d * PS))) # amplitude
[
[AMP, OptSigX, OptSigY, THETA],
[AMP_ERR, SIGX_ERR, SIGY_ERR, THETA_ERR]
], OptModel = gaussian_fit_ac(AC)
FLS = np.sqrt(OptSigX * OptSigY)
data[region][wavelength]['pass_fail'] = SUCCESS
data[region][wavelength]['AC_New']['sigma'][date] = Sigma_Opt
data[region][wavelength]['AC_New']['N'][date] = N
data[region][wavelength]['AC_New']['amp'][date] = AMP
data[region][wavelength]['AC_New']['amp_err'][date] = AMP_ERR
data[region][wavelength]['AC_New']['sig_x'][date] = OptSigX
data[region][wavelength]['AC_New']['sig_x_err'][date] = SIGX_ERR
data[region][wavelength]['AC_New']['sig_y'][date] = OptSigY
data[region][wavelength]['AC_New']['sig_y_err'][date] = SIGY_ERR
data[region][wavelength]['AC_New']['theta'][date] = THETA
data[region][wavelength]['AC_New']['theta_err'][date] = THETA_ERR
except ValueError:
data[region][wavelength]['AC_New']['amp'][date] = -1
data[region][wavelength]['AC_New']['amp_err'][date] = -1
data[region][wavelength]['AC_New']['sig_x'][date] = -1
data[region][wavelength]['AC_New']['sig_x_err'][date] = -1
data[region][wavelength]['AC_New']['sig_y'][date] = -1
data[region][wavelength]['AC_New']['sig_y_err'][date] = -1
data[region][wavelength]['AC_New']['theta'][date] = -1
data[region][wavelength]['AC_New']['theta_err'][date] = -1
radius, AC_pows = [], []
for idx in loc: # Determining the power at a certain radius
r = ((idx[0] - MidMapX) ** 2 + (idx[1] - MidMapY) ** 2) ** (1 / 2)
AC_pow = AC[idx[0], idx[1]].real
radius.append(r)
AC_pows.append(AC_pow)
radius, AC_pows = zip(*sorted(list(zip(radius, AC_pows)), key=op.itemgetter(0)))
radius = np.array(radius)
AC_pows = np.array(AC_pows)
num = len(radius[np.where(radius <= DIST)])
opt_fit_AC, cov_mat_AC = curve_fit(f, radius[1:num], AC_pows[1:num])
err = np.sqrt(np.diag(cov_mat_AC))
M = opt_fit_AC[0]
M_err = err[0]
B = opt_fit_AC[1]
B_err = err[1]
data[region][wavelength]['linear_new']['m'][date] = M
data[region][wavelength]['linear_new']['m_err'][date] = M_err
data[region][wavelength]['linear_new']['b'][date] = B
data[region][wavelength]['linear_new']['b_err'][date] = B_err
print('Final Length Scale: {:0.2f}'.format(FLS))
if SUCCESS:
pass
elif Length_Scale > FINAL_LENGTH_SCALE:
pass
else:
LOG_OUT = TX.format(str(wavelength), str(date), str(SUCCESS), str(FLS),
str(FINAL_LENGTH_SCALE))
LOG.write(LOG_OUT)
TIME_END = time.time()
TIME_TOTAL = TIME_END - TIME_START
head = 'Time to run:'
print("\n" + head + "\n" + '=' * len(head))
print('{:d} min : {:d} sec'.format(int(TIME_TOTAL // 60), int(TIME_TOTAL % 60))) # time to run in minutes
print()
# Saving data to a pickle file so I don't have to run this everytime, only when there is new data.
data = default_to_regular(data)
with open('/home/cobr/Documents/jcmt-variability/data/data.pickle', 'wb') as OUT:
pickle.dump(data, OUT)