-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflexdash1.Rmd
93 lines (65 loc) · 2.31 KB
/
flexdash1.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
title: "UNHCR Livelihoods Data 2019 - Major crops yield and family size"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill
---
```{r setup, include=FALSE}
### Author: Abel Gelman
### 4- static dashboard
library(flexdashboard)
library(ggplot2)
library(plotly)
library(plyr)
library(tidyverse)
drs_df_raw_link <- "https://raw.githubusercontent.com/CartONG/R_training/main/df19.csv?token=ALMJAS5FZNUMPT2YXW2HM23A4B6Z2"
# download file again but forcing R to read all columns as character
df19 <- read_csv(drs_df_raw_link,
col_types = cols(.default = "c"))
```
Column {data-width=350}
-----------------------------------------------------------------------
### Yield per family size: CASSAVA
```{r}
df19$Crop1KG <- as.numeric(df19$Crop1KG)
df19$Crop1HA <- as.numeric(df19$Crop1HA)
df19$FamilySize <- as.numeric(df19$FamilySize)
dfYield3 <- df19 %>%
select(BE, Country, FamilySize, Crop1, Crop1HA, Crop1KG, O1IncomeFarming, ArrivalYear) %>%
mutate(Yield = round(Crop1KG / Crop1HA, 0),
Check = Yield < 150) %>%
filter(Check==FALSE) %>%
filter (Crop1=="Cassava"|Crop1=="Maize"|Crop1=="Groundnuts, with shell") %>%
filter(Yield != Inf)
dfYield_cassava <- dfYield3 %>%
filter(Yield < 5000 & FamilySize < 15) %>%
filter(Crop1 == "Cassava") %>%
ggplot(aes(x = FamilySize, y = Yield))+
geom_point(colour = "green", alpha = 0.3)+
geom_jitter(height = 0.2, width = 0.4, colour = "green", alpha = 0.3)
ggplotly(dfYield_cassava)
#rm(dfYield_cassava)
```
Column {data-width=350}
-----------------------------------------------------------------------
### Yield per family size: GROUNDNUTS
```{r}
dfYield_groundnuts <- dfYield3 %>%
filter(Yield < 5000 & FamilySize < 15) %>%
filter(Crop1 == "Groundnuts, with shell") %>%
ggplot(aes(x = FamilySize, y = Yield))+
geom_point(colour = "red", alpha = 0.3)+
geom_jitter(height = 0.2, width = 0.4, colour = "red", alpha = 0.3)
ggplotly(dfYield_groundnuts)
```
### Yield per family size: MAIZE
```{r}
dfYield_Maize <- dfYield3 %>%
filter(Yield < 5000 & FamilySize < 15) %>%
filter(Crop1 == "Maize") %>%
ggplot(aes(x = FamilySize, y = Yield))+
geom_point(colour = "blue", alpha = 0.3)+
geom_jitter(height = 0.2, width = 0.4, colour = "blue", alpha = 0.3)
ggplotly(dfYield_Maize)
```