-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDay22.cs
373 lines (313 loc) · 13.6 KB
/
Day22.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
using AdventOfCode.CSharp.Common;
using System;
using System.Runtime.CompilerServices;
namespace AdventOfCode.CSharp.Y2021.Solvers;
public class Day22 : ISolver
{
readonly struct Cube(int x1, int x2, int y1, int y2, int z1, int z2)
{
private readonly int _x1 = x1;
private readonly int _x2 = x2;
private readonly int _y1 = y1;
private readonly int _y2 = y2;
private readonly int _z1 = z1;
private readonly int _z2 = z2;
// Since all coordinate values are doubled, we need to divide by 8 to account for this on all 3 axes.
public long Volume => (_x2 + 1L - _x1) * (_y2 + 1L - _y1) * (_z2 + 1L - _z1) / 8L;
public bool ContainsCube(Cube other) => _x1 <= other._x1 && _y1 <= other._y1 && _z1 <= other._z1 && other._x2 <= _x2 && other._y2 <= _y2 && other._z2 <= _z2;
public Cube UnionWith(Cube other)
=> new(
Math.Min(_x1, other._x1), Math.Max(_x2, other._x2),
Math.Min(_y1, other._y1), Math.Max(_y2, other._y2),
Math.Min(_z1, other._z1), Math.Max(_z2, other._z2));
public Cube IntersectWith(Cube other)
=> new(
Math.Max(_x1, other._x1), Math.Min(_x2, other._x2),
Math.Max(_y1, other._y1), Math.Min(_y2, other._y2),
Math.Max(_z1, other._z1), Math.Min(_z2, other._z2));
public bool ContainsNegativeSide => _x2 < _x1 || _y2 < _y1 || _z2 < _z1;
public void GetRangeOnAxis(int axis, out int start, out int end)
{
// Abuse the fact that the coordinates are contiguous in memory to turn this into a memory lookup.
ref int field = ref Unsafe.AsRef(in _x1);
start = Unsafe.Add(ref field, (nint)(uint)(axis * 2));
end = Unsafe.Add(ref field, (nint)(uint)(axis * 2 + 1));
}
public void SplitOnAxis(int axis, int separator, out Cube left, out Cube right)
{
switch (axis)
{
case 0:
left = new(_x1, separator - 1, _y1, _y2, _z1, _z2);
right = new(separator, _x2, _y1, _y2, _z1, _z2);
break;
case 1:
left = new(_x1, _x2, _y1, separator - 1, _z1, _z2);
right = new(_x1, _x2, separator, _y2, _z1, _z2);
break;
case 2:
default:
left = new(_x1, _x2, _y1, _y2, _z1, separator - 1);
right = new(_x1, _x2, _y1, _y2, separator, _z2);
break;
}
}
}
readonly record struct RebootStep(bool IsOn, Cube Cube);
[SkipLocalsInit]
public static void Solve(ReadOnlySpan<byte> input, Solution solution)
{
Span<RebootStep> part1Steps = stackalloc RebootStep[1024];
Span<RebootStep> part2Steps = stackalloc RebootStep[1024];
int part1StepCount = 0;
int part2StepCount = 0;
Cube part1Bounds = new(-100, 99, -100, 99, -100, 99);
Cube part2Bounds = default;
int inputIndex = 0;
while (inputIndex < input.Length)
{
// ParseRebootStep will parse the input, but will also modify the starting and ending coordinates
// such that each value will be doubled, and the ending values will be offset by 1.
// Example: x=1 to 23 will be stored as 2 to 47.
RebootStep rebootStep = ParseRebootStep(input, ref inputIndex);
(bool isOn, Cube cube) = rebootStep;
// Clamp the cube to the bounds from part 1
Cube boundToPart1 = cube.IntersectWith(part1Bounds);
if (!boundToPart1.ContainsNegativeSide)
part1Steps[part1StepCount++] = new(isOn, boundToPart1);
part2Bounds = part2Bounds.UnionWith(cube);
part2Steps[part2StepCount++] = rebootStep;
}
part1Steps = part1Steps.Slice(0, part1StepCount);
part2Steps = part2Steps.Slice(0, part2StepCount);
long part1 = Solve(part1Steps, part1Bounds);
long part2 = Solve(part2Steps, part2Bounds);
solution.SubmitPart1(part1);
solution.SubmitPart2(part2);
}
[SkipLocalsInit]
private static long Solve(ReadOnlySpan<RebootStep> steps, Cube boundingCube, int splitAxis = 0, bool defaultIsOn = false)
{
// Skip any steps at the start which set the cube to the same state that is the default
int newStart = 0;
while (newStart < steps.Length && steps[newStart].IsOn == defaultIsOn)
newStart++;
steps = steps[newStart..];
// If there are no steps left, then we use the volume of the bounding cube.
if (steps.Length == 0)
return defaultIsOn ? boundingCube.Volume : 0;
// If there is only one step, then we know that it will have the opposite state to the default.
// If the default is on, then the cube is off, so return the difference in volume with the bounding cube.
// If the default is off, then the cube is on, so return the volume of the cube.
if (steps.Length == 1)
{
// To get the volume of the cube, we need to get the cube representing the overlap
Cube overlap = steps[0].Cube.IntersectWith(boundingCube);
long cubeVolume = overlap.Volume;
return defaultIsOn ? boundingCube.Volume - cubeVolume : cubeVolume;
}
// Optimise case where there are two cubes left
if (steps.Length == 2)
{
Cube overlap1 = steps[0].Cube.IntersectWith(boundingCube);
Cube overlap2 = steps[1].Cube.IntersectWith(boundingCube);
long combinedVolumes = overlap1.Volume;
// If they both have the same state, then add together.
if (!defaultIsOn == steps[1].IsOn)
combinedVolumes += overlap2.Volume;
// If they overlap, subtract the overlap volume.
Cube overlaps = overlap1.IntersectWith(overlap2);
if (!overlaps.ContainsNegativeSide)
combinedVolumes -= overlaps.Volume;
return defaultIsOn ? boundingCube.Volume - combinedVolumes : combinedVolumes;
}
// Try find an axis and value to split on.
int separator;
Span<int> axisValues = steps.Length <= 8 ? stackalloc int[16] : new int[steps.Length * 2];
while (true)
{
// Get two coordinates from each cube on the given axis and put it in axisValues.
// Skip any coordinates that are already touching the bounding cube.
int numValues = GetAxisValues(steps, boundingCube, splitAxis, axisValues);
// If there are no values, it means that all the cubes are touching the bounding cube on the axis.
// We therefore try the next axis
if (numValues == 0)
{
splitAxis = (splitAxis + 1) % 3;
continue;
}
// Determine the value to split on
separator = GetMedian(axisValues.Slice(0, numValues));
// If the separator is odd, then increment it by 1 so that it represents the start of a range.
if (separator % 2 != 0)
separator++;
break;
}
// Generate two new cubes after splitting on the given axis
boundingCube.SplitOnAxis(splitAxis, separator, out Cube leftCube, out Cube rightCube);
// Build a list of steps that affect the left cube, and a list that affects the right cube.
// If a step overlaps with both the left and right cube, it will be placed in both lists.
Span<RebootStep> leftSteps = steps.Length <= 8 ? stackalloc RebootStep[8] : new RebootStep[steps.Length];
Span<RebootStep> rightSteps = steps.Length <= 8 ? stackalloc RebootStep[8] : new RebootStep[steps.Length];
int leftStepsLength = 0;
int rightStepsLength = 0;
// In this process, we may also find cubes that encompass the entirety of the left or right cube.
// When we find these, we will be able to update the default state to apply for the entire cube.
bool leftDefault = defaultIsOn;
bool rightDefault = defaultIsOn;
foreach (RebootStep step in steps)
{
Cube cube = step.Cube;
cube.GetRangeOnAxis(splitAxis, out int start, out int end);
bool shouldCheckRightOverlap = true;
if (start < separator)
{
if (separator <= end + 1 && cube.ContainsCube(leftCube))
{
// If a cube encompasses the entirety of the left cube, then we can ignore any prior steps.
// We can also set the default value for the entire left cube to that of the encompassing cube.
leftStepsLength = 0; // Setting this to zero is how we clear the list of steps
leftDefault = step.IsOn;
// We also know we don't need to check the right cube for overlap as it can't overlap both.
shouldCheckRightOverlap = false;
}
else
{
leftSteps[leftStepsLength++] = step;
}
}
if (separator < end)
{
if (shouldCheckRightOverlap && start <= separator && cube.ContainsCube(rightCube))
{
rightStepsLength = 0;
rightDefault = step.IsOn;
}
else
{
rightSteps[rightStepsLength++] = step;
}
}
}
// Every step down, we split by the next axis
int nextAxis = (splitAxis + 1) % 3;
long leftVolume = Solve(leftSteps.Slice(0, leftStepsLength), leftCube, nextAxis, leftDefault);
long rightVolume = Solve(rightSteps.Slice(0, rightStepsLength), rightCube, nextAxis, rightDefault);
return leftVolume + rightVolume;
}
// Implementation of introselect algorithm to find median of a list of values
private static int GetMedian(Span<int> values)
{
int medianIndex = (values.Length - 1) / 2;
while (values.Length > 1)
{
if (medianIndex == 0)
return FindMin(values);
if (medianIndex == values.Length - 1)
return FindMax(values);
int pivot = values[0];
int l = 1;
int r = values.Length - 1;
while (l <= r)
{
int score = values[l];
if (score <= pivot)
{
l++;
}
else
{
values[l] = values[r];
values[r] = score;
r--;
}
}
if (l <= medianIndex)
{
medianIndex -= l;
values = values.Slice(l);
}
else if (l == medianIndex + 1)
{
return pivot;
}
else
{
values = values.Slice(1, l - 1);
}
}
return values[0];
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static int FindMax(Span<int> scores)
{
int max = int.MinValue;
foreach (int score in scores)
if (score > max)
max = score;
return max;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static int FindMin(Span<int> scores)
{
int min = int.MaxValue;
foreach (int score in scores)
if (score < min)
min = score;
return min;
}
}
private static int GetAxisValues(ReadOnlySpan<RebootStep> steps, Cube boundingCube, int axis, Span<int> values)
{
boundingCube.GetRangeOnAxis(axis, out int boundingStart, out int boundingEnd);
int valuesLength = 0;
foreach (RebootStep step in steps)
{
Cube cube = step.Cube;
cube.GetRangeOnAxis(axis, out int start, out int end);
if (start > boundingStart)
values[valuesLength++] = start;
if (end < boundingEnd)
values[valuesLength++] = end;
}
return valuesLength;
}
private static RebootStep ParseRebootStep(ReadOnlySpan<byte> input, ref int inputIndex)
{
bool isOn = input[inputIndex + 1] == 'n';
inputIndex += isOn ? "on x=".Length : "off x=".Length;
int x1 = ReadIntegerFromInput(input, '.', ref inputIndex);
inputIndex++;
int x2 = ReadIntegerFromInput(input, ',', ref inputIndex);
inputIndex += 2;
int y1 = ReadIntegerFromInput(input, '.', ref inputIndex);
inputIndex++;
int y2 = ReadIntegerFromInput(input, ',', ref inputIndex);
inputIndex += 2;
int z1 = ReadIntegerFromInput(input, '.', ref inputIndex);
inputIndex++;
int z2 = ReadIntegerFromInput(input, '\n', ref inputIndex);
return new(isOn, new(x1 * 2, x2 * 2 + 1, y1 * 2, y2 * 2 + 1, z1 * 2, z2 * 2 + 1));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int ReadIntegerFromInput(ReadOnlySpan<byte> span, char until, ref int i)
{
// Assume that the first character is always a digit
byte c = span[i++];
int mul;
int ret;
if (c == '-')
{
mul = -1;
ret = 0;
}
else
{
mul = 1;
ret = c - '0';
}
byte cur;
while ((cur = span[i++]) != until)
ret = ret * 10 + (cur - '0');
return mul * ret;
}
}