-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathfeature_operation.py
265 lines (244 loc) · 13 KB
/
feature_operation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
from torch.autograd import Variable as V
from scipy.misc import imresize
import numpy as np
import torch
import settings
import time
import util.upsample as upsample
import util.vecquantile as vecquantile
import multiprocessing.pool as pool
from loader.data_loader import load_csv
from loader.data_loader import SegmentationData, SegmentationPrefetcher
features_blobs = []
def hook_feature(module, input, output):
features_blobs.append(output.data.cpu().numpy())
class FeatureOperator:
def __init__(self):
if not os.path.exists(settings.OUTPUT_FOLDER):
os.makedirs(os.path.join(settings.OUTPUT_FOLDER, 'image'))
self.data = SegmentationData(settings.DATA_DIRECTORY, categories=settings.CATAGORIES)
self.loader = SegmentationPrefetcher(self.data,categories=['image'],once=True,batch_size=settings.BATCH_SIZE)
self.mean = [109.5388,118.6897,124.6901]
def feature_extraction(self, model=None, memmap=True):
loader = self.loader
# extract the max value activaiton for each image
maxfeatures = [None] * len(settings.FEATURE_NAMES)
wholefeatures = [None] * len(settings.FEATURE_NAMES)
features_size = [None] * len(settings.FEATURE_NAMES)
features_size_file = os.path.join(settings.OUTPUT_FOLDER, "feature_size.npy")
if memmap:
skip = True
mmap_files = [os.path.join(settings.OUTPUT_FOLDER, "%s.mmap" % feature_name) for feature_name in settings.FEATURE_NAMES]
mmap_max_files = [os.path.join(settings.OUTPUT_FOLDER, "%s_max.mmap" % feature_name) for feature_name in settings.FEATURE_NAMES]
if os.path.exists(features_size_file):
features_size = np.load(features_size_file)
else:
skip = False
for i, (mmap_file, mmap_max_file) in enumerate(zip(mmap_files,mmap_max_files)):
if os.path.exists(mmap_file) and os.path.exists(mmap_max_file) and features_size[i] is not None:
print('loading features %s' % settings.FEATURE_NAMES[i])
wholefeatures[i] = np.memmap(mmap_file, dtype=float,mode='r', shape=tuple(features_size[i]))
maxfeatures[i] = np.memmap(mmap_max_file, dtype=float, mode='r', shape=tuple(features_size[i][:2]))
else:
print('file missing, loading from scratch')
skip = False
if skip:
return wholefeatures, maxfeatures
num_batches = (len(loader.indexes) + loader.batch_size - 1) / loader.batch_size
for batch_idx,batch in enumerate(loader.tensor_batches(bgr_mean=self.mean)):
del features_blobs[:]
input = batch[0]
batch_size = len(input)
print('extracting feature from batch %d / %d' % (batch_idx+1, num_batches))
input = torch.from_numpy(input[:, ::-1, :, :].copy())
input.div_(255.0 * 0.224)
if settings.GPU:
input = input.cuda()
input_var = V(input,volatile=True)
logit = model.forward(input_var)
while np.isnan(logit.data.cpu().max()):
print("nan") #which I have no idea why it will happen
del features_blobs[:]
logit = model.forward(input_var)
if maxfeatures[0] is None:
# initialize the feature variable
for i, feat_batch in enumerate(features_blobs):
size_features = (len(loader.indexes), feat_batch.shape[1])
if memmap:
maxfeatures[i] = np.memmap(mmap_max_files[i],dtype=float,mode='w+',shape=size_features)
else:
maxfeatures[i] = np.zeros(size_features)
if len(feat_batch.shape) == 4 and wholefeatures[0] is None:
# initialize the feature variable
for i, feat_batch in enumerate(features_blobs):
size_features = (
len(loader.indexes), feat_batch.shape[1], feat_batch.shape[2], feat_batch.shape[3])
features_size[i] = size_features
if memmap:
wholefeatures[i] = np.memmap(mmap_files[i], dtype=float, mode='w+', shape=size_features)
else:
wholefeatures[i] = np.zeros(size_features)
np.save(features_size_file, features_size)
start_idx = batch_idx*settings.BATCH_SIZE
end_idx = min((batch_idx+1)*settings.BATCH_SIZE, len(loader.indexes))
for i, feat_batch in enumerate(features_blobs):
if len(feat_batch.shape) == 4:
wholefeatures[i][start_idx:end_idx] = feat_batch
maxfeatures[i][start_idx:end_idx] = np.max(np.max(feat_batch,3),2)
elif len(feat_batch.shape) == 3:
maxfeatures[i][start_idx:end_idx] = np.max(feat_batch, 2)
elif len(feat_batch.shape) == 2:
maxfeatures[i][start_idx:end_idx] = feat_batch
if len(feat_batch.shape) == 2:
wholefeatures = maxfeatures
return wholefeatures,maxfeatures
def quantile_threshold(self, features, savepath=''):
qtpath = os.path.join(settings.OUTPUT_FOLDER, savepath)
if savepath and os.path.exists(qtpath):
return np.load(qtpath)
print("calculating quantile threshold")
quant = vecquantile.QuantileVector(depth=features.shape[1], seed=1)
start_time = time.time()
last_batch_time = start_time
batch_size = 64
for i in range(0, features.shape[0], batch_size):
batch_time = time.time()
rate = i / (batch_time - start_time + 1e-15)
batch_rate = batch_size / (batch_time - last_batch_time + 1e-15)
last_batch_time = batch_time
print('Processing quantile index %d: %f %f' % (i, rate, batch_rate))
batch = features[i:i + batch_size]
batch = np.transpose(batch, axes=(0, 2, 3, 1)).reshape(-1, features.shape[1])
quant.add(batch)
ret = quant.readout(1000)[:, int(1000 * (1-settings.QUANTILE)-1)]
if savepath:
np.save(qtpath, ret)
return ret
# return np.percentile(features,100*(1 - settings.QUANTILE),axis=axis)
@staticmethod
def tally_job(args):
features, data, threshold, tally_labels, tally_units, tally_units_cat, tally_both, start, end = args
units = features.shape[1]
size_RF = (settings.IMG_SIZE / features.shape[2], settings.IMG_SIZE / features.shape[3])
fieldmap = ((0, 0), size_RF, size_RF)
pd = SegmentationPrefetcher(data, categories=data.category_names(),
once=True, batch_size=settings.TALLY_BATCH_SIZE,
ahead=settings.TALLY_AHEAD, start=start, end=end)
count = start
start_time = time.time()
last_batch_time = start_time
for batch in pd.batches():
batch_time = time.time()
rate = (count - start) / (batch_time - start_time + 1e-15)
batch_rate = len(batch) / (batch_time - last_batch_time + 1e-15)
last_batch_time = batch_time
print('labelprobe image index %d, items per sec %.4f, %.4f' % (count, rate, batch_rate))
for concept_map in batch:
count += 1
img_index = concept_map['i']
scalars, pixels = [], []
for cat in data.category_names():
label_group = concept_map[cat]
shape = np.shape(label_group)
if len(shape) % 2 == 0:
label_group = [label_group]
if len(shape) < 2:
scalars += label_group
else:
pixels.append(label_group)
for scalar in scalars:
tally_labels[scalar] += concept_map['sh'] * concept_map['sw']
if pixels:
pixels = np.concatenate(pixels)
tally_label = np.bincount(pixels.ravel())
if len(tally_label) > 0:
tally_label[0] = 0
tally_labels[:len(tally_label)] += tally_label
for unit_id in range(units):
feature_map = features[img_index][unit_id]
if feature_map.max() > threshold[unit_id]:
mask = imresize(feature_map, (concept_map['sh'], concept_map['sw']), mode='F')
#reduction = int(round(settings.IMG_SIZE / float(concept_map['sh'])))
#mask = upsample.upsampleL(fieldmap, feature_map, shape=(concept_map['sh'], concept_map['sw']), reduction=reduction)
indexes = np.argwhere(mask > threshold[unit_id])
tally_units[unit_id] += len(indexes)
if len(pixels) > 0:
tally_bt = np.bincount(pixels[:, indexes[:, 0], indexes[:, 1]].ravel())
if len(tally_bt) > 0:
tally_bt[0] = 0
tally_cat = np.dot(tally_bt[None,:], data.labelcat[:len(tally_bt), :])[0]
tally_both[unit_id,:len(tally_bt)] += tally_bt
for scalar in scalars:
tally_cat += data.labelcat[scalar]
tally_both[unit_id, scalar] += len(indexes)
tally_units_cat[unit_id] += len(indexes) * (tally_cat > 0)
def tally(self, features, threshold, savepath=''):
csvpath = os.path.join(settings.OUTPUT_FOLDER, savepath)
if savepath and os.path.exists(csvpath):
return load_csv(csvpath)
units = features.shape[1]
labels = len(self.data.label)
categories = self.data.category_names()
tally_both = np.zeros((units,labels),dtype=np.float64)
tally_units = np.zeros(units,dtype=np.float64)
tally_units_cat = np.zeros((units,len(categories)), dtype=np.float64)
tally_labels = np.zeros(labels,dtype=np.float64)
if settings.PARALLEL > 1:
psize = int(np.ceil(float(self.data.size()) / settings.PARALLEL))
ranges = [(s, min(self.data.size(), s + psize)) for s in range(0, self.data.size(), psize) if
s < self.data.size()]
params = [(features, self.data, threshold, tally_labels, tally_units, tally_units_cat, tally_both) + r for r in ranges]
threadpool = pool.ThreadPool(processes=settings.PARALLEL)
threadpool.map(FeatureOperator.tally_job, params)
else:
FeatureOperator.tally_job((features, self.data, threshold, tally_labels, tally_units, tally_units_cat, tally_both, 0, self.data.size()))
primary_categories = self.data.primary_categories_per_index()
tally_units_cat = np.dot(tally_units_cat, self.data.labelcat.T)
iou = tally_both / (tally_units_cat + tally_labels[np.newaxis,:] - tally_both + 1e-10)
pciou = np.array([iou * (primary_categories[np.arange(iou.shape[1])] == ci)[np.newaxis, :] for ci in range(len(self.data.category_names()))])
label_pciou = pciou.argmax(axis=2)
name_pciou = [
[self.data.name(None, j) for j in label_pciou[ci]]
for ci in range(len(label_pciou))]
score_pciou = pciou[
np.arange(pciou.shape[0])[:, np.newaxis],
np.arange(pciou.shape[1])[np.newaxis, :],
label_pciou]
bestcat_pciou = score_pciou.argsort(axis=0)[::-1]
ordering = score_pciou.max(axis=0).argsort()[::-1]
rets = [None] * len(ordering)
for i,unit in enumerate(ordering):
# Top images are top[unit]
bestcat = bestcat_pciou[0, unit]
data = {
'unit': (unit + 1),
'category': categories[bestcat],
'label': name_pciou[bestcat][unit],
'score': score_pciou[bestcat][unit]
}
for ci, cat in enumerate(categories):
label = label_pciou[ci][unit]
data.update({
'%s-label' % cat: name_pciou[ci][unit],
'%s-truth' % cat: tally_labels[label],
'%s-activation' % cat: tally_units_cat[unit, label],
'%s-intersect' % cat: tally_both[unit, label],
'%s-iou' % cat: score_pciou[ci][unit]
})
rets[i] = data
if savepath:
import csv
csv_fields = sum([[
'%s-label' % cat,
'%s-truth' % cat,
'%s-activation' % cat,
'%s-intersect' % cat,
'%s-iou' % cat] for cat in categories],
['unit', 'category', 'label', 'score'])
with open(csvpath, 'w') as f:
writer = csv.DictWriter(f, csv_fields)
writer.writeheader()
for i in range(len(ordering)):
writer.writerow(rets[i])
return rets