-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathruntraining.sh
executable file
·166 lines (140 loc) · 6.16 KB
/
runtraining.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/bin/bash
script_name=`basename $0`
script_dir=`dirname $0`
version="???"
if [ -f "$script_dir/VERSION" ] ; then
version=`cat $script_dir/VERSION`
fi
source "${script_dir}/commonfunctions.sh"
numiterations="30000"
gpu="all"
one_fmonly=""
base_lr="1e-02"
power="0.8"
momentum="0.9"
weight_decay="0.0005"
average_loss="16"
lr_policy="poly"
iter_size="8"
snapshot_interval="2000"
validation_dir=""
retrain=""
additerations="2000"
function usage()
{
echo "usage: $script_name [-h] [--1fmonly] [--numiterations NUMITERATIONS]
[--gpu GPU] [--base_lr BASE_LR] [--power POWER]
[--momentum MOMENTUM]
[--weight_decay WEIGHT_DECAY]
[--average_loss AVERAGE_LOSS]
[--lr_policy POLICY] [--iter_size ITER_SIZE]
[--snapshot_interval SNAPSHOT_INTERVAL]
[--validation_dir VALIDATION_DIR]
[--additerations NUMITERATIONS]
[--retrain TRAINOUTDIR]
augtrainimages trainoutdir
Version: $version
Trains Deep3M model using caffe with training data
passed into script.
For further information about parameters below please see:
https://github.com/BVLC/caffe/wiki/Solver-Prototxt
positional arguments:
augtrainimages Augmented training data from PreprocessTrainingData.m
trainoutdir Desired output directory
optional arguments:
-h, --help show this help message and exit
--1fmonly Only train 1fm model
--gpu Which GPU to use, can be a number ie 0 or 1 or
all to use all GPUs (default $gpu)
--base_learn Base learning rate (default $base_lr)
--power Used in poly and sigmoid lr_policies. (default $power)
--momentum Indicates how much of the previous weight will be
retained in the new calculation. (default $momentum)
--weight_decay Factor of (regularization) penalization of large
weights (default $weight_decay)
--average_loss Number of iterations to use to average loss
(default $average_loss)
--lr_policy Learning rate policy (default $lr_policy)
--iter_size Accumulate gradients across batches through the
iter_size solver field. (default $iter_size)
--snapshot_interval How often caffe should output a model and solverstate.
(default $snapshot_interval)
--numiterations Number of training iterations to run (default $numiterations)
--validation_dir Augmented validation data
--retrain Continue training trained models from train directory
passed in here, writing results to trainoutdir
--additerations If --retrain is set, this value is added to the
latest iteration model file found in the
<retrain dir>/1fm/trainedmodel directory. For example,
if the latest iteration found in
<retrain>/1fm/trainedmodel is 10000 and
--additerations is set to 500 then training will
run to 10500 iterations. (default $additerations)
" 1>&2;
exit 1;
}
TEMP=`getopt -o h --long "1fmonly,numiterations:,gpu:,base_learn:,power:,momentum:,weight_decay:,average_loss:,lr_policy:,iter_size:,snapshot_interval:,validation_dir:,retrain:,additerations:" -n '$0' -- "$@"`
eval set -- "$TEMP"
while true ; do
case "$1" in
-h ) usage ;;
--1fmonly ) one_fmonly="--models 1fm " ; shift ;;
--gpu ) gpu=$2 ; shift 2 ;;
--base_learn ) base_lr=$2 ; shift 2 ;;
--power ) power=$2 ; shift 2 ;;
--momentum ) momentum=$2 ; shift 2 ;;
--weight_decay ) weight_decay=$2 ; shift 2 ;;
--average_loss ) average_loss=$2 ; shift 2 ;;
--lr_policy ) lr_policy=$2 ; shift 2 ;;
--iter_size ) iter_size=$2 ; shift 2 ;;
--snapshot_interval ) snapshot_interval=$2 ; shift 2 ;;
--numiterations ) numiterations=$2 ; shift 2 ;;
--additerations ) additerations=$2 ; shift 2 ;;
--retrain ) retrain=$2 ; shift 2 ;;
--validation_dir ) validation_dir=$2 ; shift 2 ;;
--) shift ; break ;;
esac
done
if [ $# -ne 2 ] ; then
usage
fi
declare -r aug_train=$1
declare -r train_out=$2
if [ -z "$validation_dir" ] ; then
validation_dir=$aug_train
fi
CreateTrainJob.m "$aug_train" "$train_out" "$validation_dir"
ecode=$?
if [ $ecode != 0 ] ; then
echo "Error, a non-zero exit code ($ecode) was received from: CreateTrainJob.m \"$aug_train\" \"$train_out\" \"$validation_dir\""
echo ""
exit 2
fi
if [ -n "$retrain" ] ; then
if [ ! -d "$retrain" ] ; then
echo "ERROR, $retrain is not a directory"
exit 3
fi
latest_iteration=$(get_latest_iteration "$retrain/1fm/trainedmodel")
if [ -n "$latest_iteration" ] ; then
echo "Latest iteration found in 1fm from $retrain is $latest_iteration"
let numiterations=$latest_iteration+$additerations
echo "Adding $additerations iterations so will now run to $numiterations iterations"
else
echo "No models $retrain/1fm/trainedmodel leaving numiterations at $numiterations"
fi
echo "--retrain flag set, previous models copied from $retrain" >> "$train_out/readme.txt"
echo "Copying over trained models"
res=$(copy_trained_models "$retrain" "$train_out")
echo "$res"
fi
trainworker.sh ${one_fmonly}--numiterations $numiterations --gpu $gpu --base_learn $base_lr --power $power --momentum $momentum --weight_decay $weight_decay --average_loss $average_loss --lr_policy $lr_policy --iter_size $iter_size --snapshot_interval $snapshot_interval "$train_out"
ecode=$?
if [ $ecode != 0 ] ; then
echo "ERROR, a non-zero exit code ($ecode) was received from: trainworker.sh --numiterations $numiterations"
exit 4
fi
echo ""
echo "Training has completed. Results are stored in $train_out"
echo "Have a nice day!"
echo ""