-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCM20210728_SICP_1.1.1_Expressions.jl
2244 lines (1819 loc) · 82 KB
/
PCM20210728_SICP_1.1.1_Expressions.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.20.4
using Markdown
using InteractiveUtils
# ╔═╡ a5837b6b-a4d0-45bb-976c-cecda8e6781b
begin
using Pluto
using Plots
using GraphRecipes
#----------------------------------------------------------------
println("pkgversion(Pluto) = ", pkgversion(Pluto))
println("pkgversion(Plots) = ", pkgversion(Plots))
println("pkgversion(GraphRecipes) = ", pkgversion(GraphRecipes))
end # begin
# ╔═╡ 0b714da0-b003-11ef-36b9-c1998185b8b1
md"
====================================================================================
#### SICP: [1.1.1_Expressions](https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/full-text/book/book-Z-H-10.html#%_sec_1.1.1)
##### file: PCM20210728\_SICP\_1.1.1\_Expressions.jl
##### Julia/Pluto.jl: 1.11.2/0.20.4 by PCM *** 2025/01/11 ***
====================================================================================
"
# ╔═╡ 53196c5e-41a1-4e37-9405-5e2ee4d8c58e
md"
##### 0. Introduction
*One easy way to get started at programming is to examine some typical interactions with* ... a Julia/Pluto compiler/notebook system. *Imagine that you are sitting at a computer terminal. You type an expression, and the* Julia/Pluto system *responds by displaying the result of its evaluating that expression.*(SICP, 1996, with some modifications by us)
First we try to be code Julia as close as possible to the *functional* style of SICP in [*MIT-Scheme*](https://en.wikipedia.org/wiki/MIT/GNU_Scheme) and especially [*Scheme*](https://en.wikipedia.org/wiki/Scheme_(programming_language)), then we introduce *idiomatic* Julia elements to document its the elegance and expressiveness.
In case of any doubt regarding *syntax* and *semantics* of Julia's constructs you can consult the [Julia doc](https://docs.julialang.org/en/v1/).
"
# ╔═╡ 991bea2b-cb9b-4f95-8085-58eb16f7f775
md"
---
##### 1. Topics
*Topics* dealt are:
- [*expression*](https://en.wikipedia.org/wiki/Expression_(computer_science)), *evaluation*, *value*
- [*numeral*](- https://en.wikipedia.org/wiki/Numeral_system), *Number*
- [*literal*](https://en.wikipedia.org/wiki/Literal_(computer_programming))
- [*types*](https://en.wikipedia.org/wiki/Data_type): $Int64, Float64, Real$
- *dynamic*, *static* types
- *combination*, *compound expression*
- *function call*, [*operator*](https://en.wikipedia.org/wiki/Operator_(computer_programming)): $+, - *, /, div, ÷, ==, ===$
- *prefix*, *infix* and *postfix* notation
- [*Polish notation*](https://en.wikipedia.org/wiki/Polish_notation)
- [*infix* notation](https://en.wikipedia.org/wiki/Infix_notation)
- [*reverse Polish notation*](https://en.wikipedia.org/wiki/Reverse_Polish_notation)
- *Kantorovic* trees, [*algebraic expression* tree](https://en.wikipedia.org/wiki/Binary_expression_tree)
- type *conversion*
- tests of *identity*: $==$, $===$
- [*operator associativity*](https://en.wikipedia.org/wiki/Operator_associativity), *left*-associativity, *right*-associativity
- *supertype, subtypes, type hierarchy*
- *built-in* functions: $typeof(.), typejoin(.,.), typemin(.), typemax(.)$
"
# ╔═╡ 30996adf-ecc2-4132-ae86-3c02ce8ddff4
md"
---
##### 2. Libraries
"
# ╔═╡ 3ecd4f01-805a-4c67-8897-fb57016b50ae
md"
---
##### 3. SICP-Scheme-like *functional* Julia:
###### 3.1 *Simple* Numeric *Expressions*
*Expressions* are evaluated to a *value* (like e.g. a *number*):
$evaluation: <expression> \mapsto <value> \square$
When *numeric* expressions are *simple* they are *numerals* (a special kind of [*literals*](https://en.wikipedia.org/wiki/Literal_(computer_programming))) and evaluated to *numbers*:
$<expression> ::= <numeric\ expression> | <nonnumeric\ expression>.$
$<numeric\ expression> ::=$
$<simple\ numeric\ expression> | <numeric\ combination>.$
$<simple\ numeric\ expression> ::= <numeral>.$
$evaluation: <simple\ numeric\ expression> \mapsto <number> \square$
$evaluation: <numeral> \mapsto <number> \square$
Concepts enclosed in $<...>$ are *nonterminals* symbols; they are replaced by *terminals* of a *grammatic*, like:
$<value>\ ::=\ 12\ |\ 13.0\ |\ 23E-5\ |\ 23.f0\ |\ ...$
When they are *numeric combinations* they are evaluated in *several* steps to a *number*:
$evaluation: <numeric\ combination> \mapsto <number> \square$
"
# ╔═╡ 09690a94-3733-4e75-b1c9-e72826a571bc
md"
---
###### 3.2 Simple Numeric Expressions: *Numeral* $\mapsto$ *Number*
Numerals in Julia are *dynamic* typed. [Types](https://en.wikipedia.org/wiki/Type_system) are sets of elements of a kind *declared* by the programmer.
*Dynamic* types are *not* declared *in the code* but appear *in the evaluation process* (e.g. *with* or *without* decimal point when a numeric type). In contrast to that *static* types are explicitly declared in the code *before* the computation process starts.
Languages with *dynamic* typing are e.g. Scheme, Javascript and Smalltalk, wheras *static* types appear in Java, C++, etc. *Julia* code can be written in *both* styles.
"
# ╔═╡ 198ce2f2-988c-4387-a73d-60f5d785c3bc
486 # dynamic typed ==> 486
# ╔═╡ dc5f6985-d4ae-4336-9f66-185bfed79a05
typeof(486) # dynamic typed ==> Int64
# ╔═╡ 9fdcb71c-da9f-4b20-b606-a1ce7e3d8456
486. # dynamic typed ==> 486.0
# ╔═╡ 17468ebe-4b5c-4ff1-a067-fae14a5e332f
typeof(486.) # dynamic typed ==> Float64
# ╔═╡ 6ddd5a28-6ed9-4115-98ef-b0047bc2dfe5
486f0 # dynamic typed ==> 486.0f0
# ╔═╡ 373d489f-c853-4ba1-9ed5-7923a7ca4b16
typeof(486f0) # dynamic typed ==> Float32
# ╔═╡ 0d95e7f8-a75f-4a09-9134-f4833f7ea561
486E-2 # dynamic typed ==> 4.86
# ╔═╡ a947f3c3-8e9b-402f-84fc-91c0fbd5df22
typeof(486E0) # dynamic typed ==> Float64
# ╔═╡ 579560f8-5e67-4ba1-bccd-8c9aa05b2530
md"
###### 3.3 *Compound Prefix* Expressions (= *Combinations*) are *Function Calls*
*Flat (= non-nested)* and *nested* expressions have several names. They are called *compound prefix* expressions or *combinations*. They have the *syntax* and *semantics* of *function calls*.
These can be written in *linear* form with parentheses in different ways, such as in *prefix*, *infix* and *postfix* notation. While *SICP* (= *MIT Scheme*) accepts only *prefix* expressions, *postfix* notation is used in some pocket calculators.
Julia also understands the *infix* notation learnt in school when dealing with arithmetic expressions. This makes mathematical expressions and formulae coded in Julia easy to understand for non-CS domain experts. Parentheses are used to control the evaluation process.
When they are *numeric combinations* they are evaluated in *several* steps to a *number*:
$evaluation: <numeric\ combination> \mapsto <number> \square$
*Numeric combinations* are *numeric function calls* with at least *one* operand. This constraint can be tested by yourself (see below):
$<numeric\ combination> ::= <numeric\ function\ call>$
###### 3.3.1 *Flat* Numeric Expressions (= *Flat Numeric Combinations*)
The *numeric function call* consists of the *numeric function symbol* or *numeric function name* (= $<operator>$) and one or more *arguments* (= $<operands>$):
$<numeric\ function\ call> ::= <numeric\ operator> \left(<operand>...\right).$
$evaluation: <numeric\ operator>\left(<operand>\right) \mapsto <number> \square$
$evaluation: <numeric\ operator>\left(<operand>,...\right)\; \mapsto \; <number> \square$
"
# ╔═╡ 866f4a84-5479-44aa-b915-4c3e10a16d48
md"
###### 3.3.2 *Nested* Numeric Expressions (= *Nested Numeric Combinations*)
*Nested* numeric combinations contain a *numeric function call* in the place of an *operand*.
$evaluation:$
$<numeric\ operator>\left(..., <operator>\left(<operand>\right),...\right)\; \mapsto \; <number>\square$
$evaluation:$
$<numeric\ operator>\left(..., <operator>\left(<operand>,...\right),...\right)\;\mapsto\; <number>\square$
$<numeric\ operator> ::= +, -, ..., sin, ...$
$<operand> ::= e.g.: -3, 1, -2.0, 3.141, ...$
$<number> ::= e.g.: -1, 4.0, -6.2, 8.2, ...$
"
# ╔═╡ 015dbbd5-a3b0-407a-9ff9-b5a0bee3713a
md"
---
###### 3.4 *Flat Numeric* Expressions
"
# ╔═╡ e7125587-8e19-4201-9faf-e5fcc6d9f0bd
+(486) # ==> 486
# ╔═╡ 9cc6ba2b-b25d-495f-b4b1-c71e0b897d41
-(486.) # -486.0
# ╔═╡ 2741242e-fc52-4918-a884-af95a40626ed
-(0.) # -0.0
# ╔═╡ f46897fa-abdc-4a21-846e-0195b0172fa0
# Math: 137 + 349 # ==> 486
# SICP-Scheme: (+ 137 349) # ==> 486
# numeric prefix expression Julia:
+(137, 349) # ==> 486 --> :)
# ╔═╡ 3794e29c-696b-4e18-8cc2-2a36489ccd5c
typeof( +(137, 349)) # ==> Int64
# ╔═╡ 86072e36-d2f7-4dd7-8461-103ad10090b7
# Math: 2.7 + 10 # ==> 12.7
# SICP: (+ 2.7 10) # ==> 12.7
# numeric prefix expression Julia:
+(2.7, 10) # ==> 12.7 --> :)
# ╔═╡ 575db3c8-3ccc-4d89-9bc8-f25a39cf87d3
# Math: 21 + 35 + 12 + 7 # ==> 75
# SICP: (+ 21 35 12 7) # ==> 75
# numeric prefix expression Julia:
+(21, 35, 12, 7) # ==> 75 --> :)
# ╔═╡ d7e0156f-5b8c-48c9-8ce1-bbb93f6ed6d8
# Math: 1000 - 334 # ==> 666
# SICP-Scheme: (- 1000 334) # ==> 666
# numeric prefix expression Julia:
-(1000, 334) # ==> 666 --> :)
# ╔═╡ 79e083b5-e2a0-426f-968a-1f6c59eac390
typeof( -(1000, 334)) # ==> Int64
# ╔═╡ c45887c0-ddbf-4d09-b89b-af83216e51cf
# Math: 5 * 99 # ==> 495
# SICP-Scheme: (* 5 99) # ==> 495
# numeric prefix expression Julia:
*(5, 99) # ==> 495 --> :)
# ╔═╡ 873a3284-043b-4499-b1ce-8a87605e5a09
typeof( *(5, 99)) # ==> Int64 --> :)
# ╔═╡ e806ccc9-77e6-4a8a-9eec-0b1a643a5b9a
# Math: 25 * 4 * 12 # ==> 1200
# SICP: (* 25 4 12) # ==> 1200
# numeric prefix expression Julia:
*(25, 4, 12) # ==> 1200 --> :)
# ╔═╡ 6568b2a5-bc32-4d22-9c88-c8b1f1fee5af
# Math: 10 / 5 # ==> 2
# SICP-Scheme: (/ 10 5) # ==> 2
# numeric prefix expression Julia:
/(10, 5) # ==> 2.0 --> !!
# ╔═╡ 6dfc1c6c-9b77-4df8-9133-63c988696161
typeof( /(10, 5)) # ==> Float64 --> !!
# ╔═╡ f7a38676-8f9e-43ab-8cf4-af58e6e2c89c
# Math: 10 / 5 # ==> 2
# SICP: (/ 10 5) # ==> 2
# numeric prefix expression Julia:
div(10, 5) # ==> 2 --> :)
# ╔═╡ 0f5bb248-9230-41a6-ad18-f68636100328
# Math: 10 / 5 # ==> 2
# SICP: (/ 10 5) # ==> 2
# numeric prefix expression Julia:
÷(10, 5) # ==> 2 --> :)
# ╔═╡ db568d2c-ac58-425d-acbe-553a072d941d
md"
###### *Boolean* Expressions
$evaluation: (Number, Number, ==) \rightarrow Boolean$
$evaluation: (Number, Number, ===) \rightarrow Boolean$
$Boolean = \{true, false\}$
"
# ╔═╡ 20850ab6-70a9-44a3-a6f0-de55c071309e
==(2, 2.0) # test of equality
# ╔═╡ 7bdaae8b-21bf-4e2d-ba03-10b9385062db
===(2, 2.0) # test of equality
# ╔═╡ 0a5dc1b5-c8c5-424b-8712-1d7394a4d07a
==(÷, div) # ==> true
# ╔═╡ 8c64d38b-98e2-4b45-bdc7-e1772efdc965
===(÷, div) # ==> true
# ╔═╡ d955da7c-2570-4808-8e6b-cb8564c2f0cd
md"
###### Type conversion
$evaluation: (Float64, Int64, /) \rightarrow Float64$
"
# ╔═╡ 9f83cded-8b07-459b-847e-87e3aca59da5
# Math: 10.0 / 5 # ==> 2.0
# SICP: (/ 10.0 5) # ==> 2.0
# numeric prefix expression Julia:
/(10.0, 5) # ==> 2.0 --> :)
# ╔═╡ b3af6b38-3b06-4966-8e88-3da2fe720e3e
md"
---
###### 3.5 *Nested Numeric* Expressions (*Compound* Combinations)
$<numeric\ combination> ::=$
$<numeric\ operator>\left(<operand>,..., <operator>\left(<operand>\right),...\right)\;|$
$<numeric\ operator>\left(<operand>,..., <operator>\left(<operand>,...\right),...\right).$
"
# ╔═╡ 62a20957-b08b-48a9-968b-e65038cc520a
md"
###### [*Operator associativity*](https://en.wikipedia.org/wiki/Operator_associativity): *left*-associativity of operator '-'
"
# ╔═╡ 2507313b-a2c7-452e-9288-a4da8bfb0ff9
# *left*-associativity of operator '-'
# Math: 1000 - 300 - 34 # ==> 666
# SICP: (- 1000 300 34) # ==> 666
# prefix Julia:
# -(1000, 300, 34) ==> MethodError: no method matching -(::Int64, ::Int64, ::Int64)
-(1000, -(300, 34)) # ==> 734 --> :(
# ╔═╡ aaa8d90b-b0d9-4e8b-aff6-a286910afc65
# left-associativity of operator '-'
# Math: 1000 - 300 - 34 # ==> 666
# SICP: (- 1000 300 34) # ==> 666
# prefix Julia:
-(-(1000, 300), 34) # ==> 666 --> :)
# ╔═╡ 3c945bff-e78a-433d-8a4d-118b6915ffc4
# Math: 3 * 5 + (10 - 6) # ==> 19
# SICP: (+ (* 3 5) (- 10 6)) # ==> 19
# prefix Julia:
+( *(3, 5), -(10, 6)) # ==> 19 =/= 666 --> :(
# ╔═╡ 63571818-e93c-4122-a998-59c040df93da
# Math: (3 * ((2 * 4) + (3 + 5))) + ((10 - 7) + 6) =
# (3 * ( 8 + 8 )) + ( 3 + 6) =
# (3 * 16 ) + ( 9 ) =
# ( 48 ) + ( 9 ) =
# 48 + 9 =
# 57
#
# SICP: (+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6)) ==> 57
#
# (+
# (*
# 3
# (+
# (* 2 4)
# (+ 3 5)))
# (+
# (- 10 7)
# 6)) ==> 57
#
# prefix Julia:
+( *(3, +( *(2, 4), +(3, 5))), +( -(10, 7), 6)) # ==> 57
# ╔═╡ 07d566e1-77a2-45b1-be22-5521d1f65d2e
md"
###### 3.6 *Nested* Combination with *Prefix* Operators as a *nonlinear* Data Flow (*Kantorovic*) tree
(Bauer & Wössner, 1981, p.21)
As a tree the *Kantorovic* tree posses *two* types of *nodes*: *leafs* and *roots*. *Leafs* are *<operands>* (like: 2, 4, ...) and *roots* are *<operators>* (like: $*, +, ...$). Edges are between *leafs* and *roots* (like: 5 -- +) or between *roots* (like: + -- +).
"
# ╔═╡ 9fe7665f-faf4-4633-be95-62126d7d6c90
# SICP: (+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6)) # ==> 57
# prefix Julia:
# +( *(3, +( *(2, 4), +(3, 5))), +( -(10, 7), 6))
+(
*(
3,
+(
*(2, 4),
+(3, 5))),
+(
-(10, 7),
6)) # ==> 57 --> :)
# ╔═╡ 9cfedf46-4325-4972-9c35-d8e604003eaa
begin
function plotBinaryTree!(markOfLeftLeaf, markOfRightLeaf, markOfRoot, coordinateXOfRootMark, coordinateYOfRootMark; widthOfTree=1.5, heightOfTree=2, fontSize=12)
annotate!(
(coordinateXOfRootMark - widthOfTree/2,
coordinateYOfRootMark + heightOfTree,
text(markOfLeftLeaf, fontSize, :blue))) # mark of left vertical arm 'x'
plot!([
(coordinateXOfRootMark -widthOfTree/2,
coordinateYOfRootMark + heightOfTree - heightOfTree/6),
(coordinateXOfRootMark - widthOfTree/2, coordinateYOfRootMark + heightOfTree/2)],
lw=1, linecolor=:black) # left vertical arm '|'
annotate!(
(coordinateXOfRootMark + widthOfTree/2,
coordinateYOfRootMark + heightOfTree,
text(markOfRightLeaf, fontSize, :blue))) # mark of right vertical arm 'x'
plot!([
(coordinateXOfRootMark + widthOfTree/2,
coordinateYOfRootMark + heightOfTree - heightOfTree/6),
(coordinateXOfRootMark + widthOfTree/2, coordinateYOfRootMark + heightOfTree/2)],
lw=1, linecolor=:black) # right vertical arm '|'
plot!([
(coordinateXOfRootMark - widthOfTree/2, coordinateYOfRootMark + heightOfTree/2),
(coordinateXOfRootMark + widthOfTree/2, coordinateYOfRootMark + heightOfTree/2)],
lw=1, linecolor=:black) # horizontal bar '-'
plot!([
(coordinateXOfRootMark, coordinateYOfRootMark + heightOfTree/2),
(coordinateXOfRootMark, coordinateYOfRootMark + heightOfTree/6)],
lw=1.5, linecolor=:black) # middle vertical arm '|'
annotate!(
(coordinateXOfRootMark, coordinateYOfRootMark, text(markOfRoot, fontSize, :blue))) # mark of root 'x'
end # function plotBinaryTree!
#-----------------------------------------------------------------------------
plot(size=(800, 400), xlim=(-1, 11), ylim=(0, 12), legend=:false, ticks=:none, title="Kantorovic Tree of expression +( *(3, +( *(2, 4), +(3, 5))), +( -(10, 7), 6))", titlefontsize=12)
plotBinaryTree!( "2", "4", "*", 1.5, 8.0)
plotBinaryTree!( "3", "5", "+", 4.0, 8.0)
plotBinaryTree!( "*", "+", "+", 2.75, 6.0; widthOfTree=2.5)
plotBinaryTree!("10", "7", "--", 7.0, 6.0; widthOfTree=2.5)
plotBinaryTree!( "3", "+", "*", 1.5, 4.0; widthOfTree=2.5)
plotBinaryTree!( "-", "6", "+", 8.25, 4.0; widthOfTree=2.5)
plotBinaryTree!( "*", "+", "+", 4.86, 2.0; widthOfTree=6.75)
end # begin
# ╔═╡ 56f8b0f1-04ce-4111-84e5-e265c5c0209b
md"
###### Fig. 1.1.1.1: *Kantorovic* tree (Bauer & Wössner, 1981, p.21)
The abstract representation of an expression in *linear* form is the *nonlinear* graphic *Kantorovic* tree. By various *search* strategies in the *expression tree* we can generate the *linear surface* representation of the expression.
- [*prefix*-expression]((https://en.wikipedia.org/wiki/Polish_notation)) (from root to leaves):
$+( *(3, +( *( 2, 4), +(3, 5))), +( -(10, 7), 6))$
- [*infix*-expression](https://en.wikipedia.org/wiki/Infix_notation) (from leaf to root to leaf):
$(((2*4)+(3+5))*3)+((10-7)+6)$
- [*postfix*-expression](https://en.wikipedia.org/wiki/Reverse_Polish_notation) (from leaves to root):
$((3,((2,4)*,(3, 5)+)+)*,((10,7)-,6)+)+$
"
# ╔═╡ 36ceefbb-a164-49cf-a499-19c6c336be23
md"
---
##### 4. *Idiomatic* Julia
###### 4.1 *Numeric* type *hierarchy*, *builtin* functions $typejoin, subtypes,...$
"
# ╔═╡ 751b2fc4-298b-479f-9974-67578d4c5f24
typejoin(Int64, Float64) # ==> Real
# ╔═╡ 0f0ce1d6-c474-4cc4-8673-5117fb05039e
Int64 <: Real # ==> true
# ╔═╡ 16a261cb-b368-4296-9452-490a0247b593
Float64 <: Real # ==> true
# ╔═╡ 838f513c-fbaa-4233-a766-79f592df74d8
subtypes(Real) # ==> there are many more types than we used here !
# ╔═╡ 901c4920-b1d8-48dc-a100-d7ae25fa51cb
function makeMyTypeTreeReal()
g = [
0 0 0;
1 0 0;
1 0 0]
names = [" Real ", " Int64 ", "Float64"]
edgelabels = Dict{Tuple, String}((2, 1) => "supertype", (3, 1) => "supertype")
graphplot(g, x=[1.0, -0.0, +2.0], y = [0.7, 0, 0], edgelabel=edgelabels, nodeshape=:rect, nodecolor=:aqua, names=names, lw=2, nodesize=0.15, fontsize=8, title="Fig. 1.1.1.2 Excerpt of Type Tree: Real", titlefontsize=12, size=(800, 400))
end # function makeMyTypeTreeReal()
# ╔═╡ f3d35d58-5889-44b8-be7c-4ca3c838bf86
makeMyTypeTreeReal()
# ╔═╡ 34265915-b300-4291-a327-4b2f512950fc
isprimitivetype(Int64)
# ╔═╡ 7e379802-13ac-4f26-97ad-644aa42b0b82
isprimitivetype(Float64)
# ╔═╡ ba6e6b36-3e29-47cc-b89d-81044f1e21be
typemin(Int64), typemax(Int64)
# ╔═╡ 69ed7655-db45-4075-8041-1f86b8c0ce67
typemin(Float64), typemax(Float64)
# ╔═╡ 1b51d453-6197-46ea-8aaa-545bbbcbf332
md"
---
###### 4.2 *Type* tree of *functions*
"
# ╔═╡ 45269af2-373c-4178-a527-b0d0064f5a06
isprimitivetype(Function)
# ╔═╡ 049a95bf-3f4d-4e07-9ae2-97718475c3b3
typeof(+)
# ╔═╡ c680cf4f-15ec-4f40-aa9b-68ca83447efb
md"""
"A *singleton type* in Julia is a type that has exactly *one* instance. Julia assigns each function its own unique singleton type. This type represents the function itself, rather its arguments or behavior" (ChatGPT, 2024/12/06)
"""
# ╔═╡ c97ebd78-ff4f-46f1-b2d4-bb2a87f268f9
typeof(==)
# ╔═╡ 74bb6da5-143f-450a-a4c0-23f6535bf91a
typeof(===)
# ╔═╡ b53099c7-267f-4f3e-aac3-b01f00ba814e
typeof(+) <: Function
# ╔═╡ 3a215113-f3da-4675-80cd-78e3c0742225
function makeMyTypeTreeFunction()
g = [
0 0 0 0;
1 0 0 0;
1 0 0 0;
1 0 0 0]
names = ["Function", " + ", " - ", "==="]
edgelabels = Dict{Tuple, String}((2, 1) => "supertype", (3, 1) => "supertype", (4, 1) => "supertype")
graphplot(g, x=[1.5, -0.0, +1.5, 3.0], y = [0.7, 0, 0, 0], edgelabel=edgelabels, nodeshape=:rect, nodecolor=:aqua, names=names, lw=2, nodesize=0.15, fontsize=8, title="Fig. 1.1.1.3 Excerpt of Type Tree: Function", titlefontsize=12, size=(800, 300))
end # function makeMyTypeTreeFunction
# ╔═╡ 7adbad5d-6f70-4b63-93dc-977e71bff457
makeMyTypeTreeFunction()
# ╔═╡ a270e918-1d26-4d66-92bd-54faeb0b4005
md"
---
###### 4.3 *Infix* operators and expressions
"
# ╔═╡ 9e498769-9f09-4a0b-9cb9-e01b03706f20
# Math: 137 + 349 # ==> 486
# SICP: (+ 137 349) # ==> 486
# prefix Julia: +(137, 349) # ==> 486 --> :)
# infix Julia:
137 + 349 # ==> 486 --> :)
# ╔═╡ fe4ea16b-98a9-4ca6-84d9-071e3c16fb9b
# Math: 1000 - 334 # ==> 666
# SICP: (- 1000 334) # ==> 666
# prefix Julia: -(1000, 334) # ==> 666 --> :)
# infix Julia:
1000 - 334 # ==> 666 --> :)
# ╔═╡ ae1d20ae-8738-412b-bfc9-3ee4a670360f
# left-associativity of operator '-'
# Math: 1000 - 300 - 34 # ==> 666
# SICP: (- 1000 300 34) # ==> 666
# prefix Julia: -(-(1000, 300), 34) # ==> 666 --> :)
# infix Julia:
(1000 - 300) - 34 == 1000 - 300 - 34 # ==> 666 --> :)
# ╔═╡ b8dcf0cd-7183-4da2-aab1-154f8c31e510
(1000 - 300) - 34 === 1000 - 300 - 34 # ==> 666 --> :)
# ╔═╡ a3b868e5-ff5d-44a0-a5e6-1191867fb2e4
# Math: 5 * 99 # ==> 495
# SICP: (* 5 99) # ==> 495
# prefix Julia: *(5, 99) # ==> 495 --> :)
# infix Julia:
5 * 99 # ==> 495 --> :)
# ╔═╡ 5f9f3c23-735f-4f24-814c-f332a0308df4
# Math: 10 / 5 # ==> 2
# SICP: (/ 10 5) # ==> 2
# prefix Julia: /(10, 5) # ==> 2.0 --> !!
# infix Julia:
10 / 5 # ==> 2.0 --> !!
# ╔═╡ af131abe-cad2-48e6-a3b4-1143dc22bea0
# Math: 10 / 5 # ==> 2
# SICP: (/ 10 5) # ==> 2
# prefix Julia: ÷(10, 5) # ==> 2 --> :)
# infix Julia:
10 ÷ 5 # ==> 2 --> :)
# ╔═╡ a220eb4c-5f3e-4cc8-8bd1-5f5d245dfde9
# Math: 10.0 / 5 # ==> 2.0
# SICP: (/ 10.0 5) # ==> 2.0
# prefix Julia: /(10.0, 5) # ==> 2.0 --> :)
# infix Julia:
10.0 / 5 # ==> 2.0 --> !!
# ╔═╡ 0f7e5745-a2ee-4969-bbb0-11affbd01fef
# Math: 2.7 + 10 # ==> 12.7
# SICP: (+ 2.7 10) # ==> 12.7
# prefix Julia: +(2.7, 10) # ==> 12.7 --> :)
# infix Julia:
2.7 + 10.0 # ==> 12.7 --> :)
# ╔═╡ 97028ddc-11a1-4e83-86e2-cacdddbb9370
# Math: 21 + 35 + 12 + 7 # ==> 75
# SICP: (+ 21 35 12 7) # ==> 75
# prefix Julia: +(21, 35, 12, 7) # ==> 75 --> :)
# infix Julia:
21 + 35 + 12 + 7 # ==> 75 --> :)
# ╔═╡ ccb70ed9-2a4d-4aae-a4ab-54477a9cd1e9
# Math: 25 * 4 * 12 # ==> 1200
# SICP: (* 25 4 12) # ==> 1200
# prefix Julia: *(25, 4, 12) # ==> 1200 --> :)
# infix Julia:
25 * 4 * 12 # ==> 1200 --> :)
# ╔═╡ 0d07dacf-9004-4f0d-a39c-4fc2a5a430a0
# Math: 3 * 5 + (10 - 6) # ==> 19
# SICP: (+ (* 3 5) (- 10 6)) # ==> 19
# prefix Julia: +(*(3, 5), -(10, 6)) # ==> 19 --> :)
# infix Julia:
((3 * 5) + (10 - 6)) == 3 * 5 + (10 - 6) # ==> 19 --> :)
# ╔═╡ 9d009aba-7015-401b-aaf2-0243b81f7d9a
# SICP: (+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6)) # ==> 57
# prefix Julia:
# +(*(3, +(*(2, 4), +(3, 5))), +(-(10, 7), 6))
# +(
# *(
# 3,
# +(
# *(2, 4),
# +(3, 5))),
# +(
# -(10, 7),
# 6)) # ==> 57 --> :)
# infix Julia:
((3 * ((2 * 4) + (3 + 5))) + ((10 - 7) + 6)) ==
3 * (2 * 4 + (3 + 5)) + 10 - 7 + 6 # ==> 57 --> :)
# ╔═╡ 41414ac2-6102-4472-9854-4c046da59cd6
((3 * ((2 * 4) + (3 + 5))) + ((10 - 7) + 6))
# ╔═╡ 2f6afa41-9c1a-403a-9a91-eb697e5f48bd
3 * (2 * 4 + (3 + 5)) + 10 - 7 + 6
# ╔═╡ 6cf5f760-e2fc-498a-b73e-aad0aae95059
3(2 * 4 + (3 + 5)) + 10 - 7 + 6
# ╔═╡ 477f6294-c4d2-49ee-8b9f-45b24cd696e9
3(2 * 4 + 3 + 5) + 10 - 7 + 6 # mostly condensed
# ╔═╡ d2dd2233-7afb-4222-96bb-86ae61ba5e72
md"
---
##### 5. Summary
We have evaluated *flat (= non-nested)* and *nested* numeric expressions by interpreting expressions as *function calls*. These can be written in *linear* form with parentheses in different ways, such as in *prefix*, *infix* and *postfix* notation. While *SICP* (= *MIT schema*) only knows *prefix* expressions, Julia also understands the *infix* notation already learnt in school. Parentheses are used to control the evaluation process.
As an alternative to the *linear* form, expressions can also be documented in *non-linear* graphical, parenthesis-free form with *Kantorovic* (= *algebraic* expression) trees. The three linear forms can be read from these trees using various *search* strategies. The evaluation process is here controlled by the edges of the graph.
As a further topic, we discussed a small excerpt from Julia's type hierarchy. In our calculations, we came across $Int64, Float64$, and $Function$. The first and second are subtypes of the supertype $Real$.
"
# ╔═╡ 9e0c051d-5502-4ac2-98ba-aa4fee74df33
md"
---
##### 6. References
- **Abelson, H., Sussman, G.J. & Sussman, J.**; [*Structure and Interpretation of Computer Programs*](https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/full-text/book/book.html), Cambridge, Mass.: MIT Press, (2/e), 2016; last visit 2025/01/09), Cambridge, Mass.: MIT Press, (2/e), 1996; last visit 2025/01/09
- **Abelson, H., Sussman, G.J. & Sussman, J.**; [*Structure and Interpretation of Computer Programs*](https://web.mit.edu/6.001/6.037/sicp.pdf), Cambridge, Mass.: MIT Press, (2/e), 2016; last visit 2025/01/09
- **Bauer, F.L. & Wössner, H.**; *Algorithmic Language and Program Development*, Heidelberg: Springer, 1981
- **JuliHub**; [*Julia doc*](https://docs.julialang.org/en/v1/); last visit 2025/01/09
- **Wikipedia**; [*Literal*](https://en.wikipedia.org/wiki/Literal_(computer_programming)); last visit 2025/01/11
- **Wikipedia**; [*MIT/GNU-Scheme*](https://en.wikipedia.org/wiki/MIT/GNU_Scheme); last visit 2024/12/04
- **Wikipedia**; [*Scheme*](https://en.wikipedia.org/wiki/Scheme_(programming_language)); last visit 2025/01/09
- **Wikipedia**; [*Type System*](https://en.wikipedia.org/wiki/Type_system); last visit 2025/01/09
"
# ╔═╡ f6448ce3-ee6c-4835-984a-20d0e08e425d
md"
====================================================================================
This is a **draft** under the Attribution-NonCommercial-ShareAlike 4.0 International **(CC BY-NC-SA 4.0)** license. Comments, suggestions for improvement and bug reports are welcome: **claus.moebus(@)uol.de**
====================================================================================
"
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
GraphRecipes = "bd48cda9-67a9-57be-86fa-5b3c104eda73"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
Pluto = "c3e4b0f8-55cb-11ea-2926-15256bba5781"
[compat]
GraphRecipes = "~0.5.13"
Plots = "~1.40.8"
Pluto = "~0.20.0"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.11.2"
manifest_format = "2.0"
project_hash = "64360a587e97fc3983a8b8e2daa3abe7052a5798"
[[deps.AbstractTrees]]
git-tree-sha1 = "2d9c9a55f9c93e8887ad391fbae72f8ef55e1177"
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
version = "0.4.5"
[[deps.Adapt]]
deps = ["LinearAlgebra", "Requires"]
git-tree-sha1 = "50c3c56a52972d78e8be9fd135bfb91c9574c140"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "4.1.1"
weakdeps = ["StaticArrays"]
[deps.Adapt.extensions]
AdaptStaticArraysExt = "StaticArrays"
[[deps.AliasTables]]
deps = ["PtrArrays", "Random"]
git-tree-sha1 = "9876e1e164b144ca45e9e3198d0b689cadfed9ff"
uuid = "66dad0bd-aa9a-41b7-9441-69ab47430ed8"
version = "1.1.3"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.2"
[[deps.ArnoldiMethod]]
deps = ["LinearAlgebra", "Random", "StaticArrays"]
git-tree-sha1 = "d57bd3762d308bded22c3b82d033bff85f6195c6"
uuid = "ec485272-7323-5ecc-a04f-4719b315124d"
version = "0.4.0"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
version = "1.11.0"
[[deps.AxisAlgorithms]]
deps = ["LinearAlgebra", "Random", "SparseArrays", "WoodburyMatrices"]
git-tree-sha1 = "01b8ccb13d68535d73d2b0c23e39bd23155fb712"
uuid = "13072b0f-2c55-5437-9ae7-d433b7a33950"
version = "1.1.0"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
version = "1.11.0"
[[deps.BitFlags]]
git-tree-sha1 = "0691e34b3bb8be9307330f88d1a3c3f25466c24d"
uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35"
version = "0.1.9"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "35abeca13bc0425cff9e59e229d971f5231323bf"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+3"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "009060c9a6168704143100f36ab08f06c2af4642"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.18.2+1"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra"]
git-tree-sha1 = "3e4b134270b372f2ed4d4d0e936aabaefc1802bc"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.25.0"
weakdeps = ["SparseArrays"]
[deps.ChainRulesCore.extensions]
ChainRulesCoreSparseArraysExt = "SparseArrays"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "bce6804e5e6044c6daab27bb533d1295e4a2e759"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.6"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"]
git-tree-sha1 = "c785dfb1b3bfddd1da557e861b919819b82bbe5b"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.27.1"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.5"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"]
git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.10.0"
[deps.ColorVectorSpace.extensions]
SpecialFunctionsExt = "SpecialFunctions"
[deps.ColorVectorSpace.weakdeps]
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "64e15186f0aa277e174aa81798f7eb8598e0157e"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.13.0"
[[deps.Compat]]
deps = ["TOML", "UUIDs"]
git-tree-sha1 = "8ae8d32e09f0dcf42a36b90d4e17f5dd2e4c4215"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "4.16.0"
weakdeps = ["Dates", "LinearAlgebra"]
[deps.Compat.extensions]
CompatLinearAlgebraExt = "LinearAlgebra"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.1.1+0"
[[deps.ConcurrentUtilities]]
deps = ["Serialization", "Sockets"]
git-tree-sha1 = "f36e5e8fdffcb5646ea5da81495a5a7566005127"
uuid = "f0e56b4a-5159-44fe-b623-3e5288b988bb"
version = "2.4.3"
[[deps.Configurations]]
deps = ["ExproniconLite", "OrderedCollections", "TOML"]
git-tree-sha1 = "4358750bb58a3caefd5f37a4a0c5bfdbbf075252"
uuid = "5218b696-f38b-4ac9-8b61-a12ec717816d"
version = "0.17.6"
[[deps.ConstructionBase]]
git-tree-sha1 = "76219f1ed5771adbb096743bff43fb5fdd4c1157"
uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
version = "1.5.8"
[deps.ConstructionBase.extensions]
ConstructionBaseIntervalSetsExt = "IntervalSets"
ConstructionBaseLinearAlgebraExt = "LinearAlgebra"
ConstructionBaseStaticArraysExt = "StaticArrays"
[deps.ConstructionBase.weakdeps]
IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
[[deps.Contour]]
git-tree-sha1 = "439e35b0b36e2e5881738abc8857bd92ad6ff9a8"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.6.3"
[[deps.DataAPI]]
git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.16.0"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "1d0a14036acb104d9e89698bd408f63ab58cdc82"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.20"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
version = "1.11.0"
[[deps.Dbus_jll]]
deps = ["Artifacts", "Expat_jll", "JLLWrappers", "Libdl"]
git-tree-sha1 = "fc173b380865f70627d7dd1190dc2fce6cc105af"
uuid = "ee1fde0b-3d02-5ea6-8484-8dfef6360eab"
version = "1.14.10+0"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
git-tree-sha1 = "9e2f36d3c96a820c678f2f1f1782582fcf685bae"
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
version = "1.9.1"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
version = "1.11.0"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.9.3"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.EarCut_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "e3290f2d49e661fbd94046d7e3726ffcb2d41053"
uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5"
version = "2.2.4+0"
[[deps.EpollShim_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "8a4be429317c42cfae6a7fc03c31bad1970c310d"
uuid = "2702e6a9-849d-5ed8-8c21-79e8b8f9ee43"
version = "0.0.20230411+1"
[[deps.ExceptionUnwrapping]]
deps = ["Test"]
git-tree-sha1 = "d36f682e590a83d63d1c7dbd287573764682d12a"
uuid = "460bff9d-24e4-43bc-9d9f-a8973cb893f4"
version = "0.1.11"
[[deps.Expat_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "f42a5b1e20e009a43c3646635ed81a9fcaccb287"
uuid = "2e619515-83b5-522b-bb60-26c02a35a201"
version = "2.6.4+2"
[[deps.ExpressionExplorer]]
git-tree-sha1 = "7005f1493c18afb2fa3bdf06e02b16a9fde5d16d"
uuid = "21656369-7473-754a-2065-74616d696c43"
version = "1.1.0"
[[deps.ExproniconLite]]
git-tree-sha1 = "4c9ed87a6b3cd90acf24c556f2119533435ded38"
uuid = "55351af7-c7e9-48d6-89ff-24e801d99491"
version = "0.10.13"
[[deps.Extents]]
git-tree-sha1 = "81023caa0021a41712685887db1fc03db26f41f5"
uuid = "411431e0-e8b7-467b-b5e0-f676ba4f2910"
version = "0.1.4"
[[deps.FFMPEG]]
deps = ["FFMPEG_jll"]
git-tree-sha1 = "53ebe7511fa11d33bec688a9178fac4e49eeee00"
uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a"
version = "0.4.2"
[[deps.FFMPEG_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "PCRE2_jll", "Zlib_jll", "libaom_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"]
git-tree-sha1 = "466d45dc38e15794ec7d5d63ec03d776a9aff36e"
uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5"
version = "4.4.4+1"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
version = "1.11.0"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.5"
[[deps.Fontconfig_jll]]
deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Zlib_jll"]
git-tree-sha1 = "21fac3c77d7b5a9fc03b0ec503aa1a6392c34d2b"
uuid = "a3f928ae-7b40-5064-980b-68af3947d34b"
version = "2.15.0+0"
[[deps.Format]]
git-tree-sha1 = "9c68794ef81b08086aeb32eeaf33531668d5f5fc"
uuid = "1fa38f19-a742-5d3f-a2b9-30dd87b9d5f8"
version = "1.3.7"
[[deps.FreeType2_jll]]
deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Zlib_jll"]
git-tree-sha1 = "786e968a8d2fb167f2e4880baba62e0e26bd8e4e"
uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7"
version = "2.13.3+1"
[[deps.FriBidi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "846f7026a9decf3679419122b49f8a1fdb48d2d5"