forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_vision_classify.py
105 lines (80 loc) · 3.31 KB
/
pretrain_vision_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Pretrain VIT"""
import torch
import torch.nn.functional as F
from functools import partial
from megatron.training import get_args, get_timers, print_rank_0
from megatron.core.enums import ModelType
from megatron.legacy.data.vit_dataset import build_train_valid_datasets
from megatron.legacy.model.vision.classification import VitClassificationModel
from megatron.legacy.model.vision.classification import MitClassificationModel
from megatron.training import pretrain
from megatron.training.utils import average_losses_across_data_parallel_group
from megatron.training.arguments import core_transformer_config_from_args
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
args = get_args()
config = core_transformer_config_from_args(args)
if args.vision_backbone_type == 'vit':
print_rank_0("building VIT model ...")
model = VitClassificationModel(config=config,
num_classes=args.num_classes,
pre_process=pre_process,
post_process=post_process)
elif args.vision_backbone_type == 'mit':
print_rank_0("building MIT model ...")
model = MitClassificationModel(num_classes=args.num_classes,
pre_process=pre_process,
post_process=post_process)
else:
raise Exception('{} vision backbone is not supported.'.format(
args.vision_backbone_type))
return model
def get_batch(data_iterator):
"""Build the batch."""
data = next(data_iterator)
# only data parallelism; no need for broadcast
images = data[0].cuda()
labels = data[1].cuda()
return images, labels
def loss_func(labels, output_tensor):
logits = output_tensor.contiguous().float()
loss = F.cross_entropy(logits, labels)
outputs = torch.argmax(logits, -1)
correct = (outputs == labels).float()
accuracy = torch.mean(correct)
averaged_loss = average_losses_across_data_parallel_group([loss, accuracy])
return loss, {"loss": averaged_loss[0], "accuracy": averaged_loss[1]}
def forward_step(data_iterator, model):
"""Forward step."""
timers = get_timers()
# Get the batch.
timers("batch-generator", log_level=2).start()
(
images,
labels,
) = get_batch(data_iterator)
timers("batch-generator").stop()
# Forward model. lm_labels
output_tensor = model(images)
return output_tensor, partial(loss_func, labels)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
print_rank_0(
"> building train, validation, and test datasets " "for VIT ..."
)
train_ds, valid_ds = build_train_valid_datasets(
data_path=args.data_path,
image_size=(args.img_h, args.img_w)
)
print_rank_0("> finished creating VIT datasets ...")
return train_ds, valid_ds, None
if __name__ == "__main__":
pretrain(
train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step,
args_defaults={'dataloader_type': 'cyclic', 'vision_pretraining': True}
)