-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkinetics_MO.py
307 lines (259 loc) · 11.2 KB
/
kinetics_MO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import numpy as np
import pandas as pd
import pyomo.environ as pyo
from measure_optimize import (
MeasurementOptimizer,
SensitivityData,
MeasurementData,
CovarianceStructure,
ObjectiveLib,
)
import pickle
import time
### STEP 1: set up measurement cost strategy
# number of time points for DCM
Nt = 8
# maximum manual measurement number for each measurement
max_manual_num = 10
# minimal measurement interval
min_interval_num = 10.0
# maximum manual measurement number for all measurements
total_max_manual_num = 10
# index of columns of SCM and DCM in Q
# SCM measurements: # CA # CB # CC. This is the index of measurement column in the reformulated Jacobian
static_ind = [0, 1, 2]
# DCM measurements: # CA # CB # CC. This is the index of measurement column in the reformulated Jacobian
dynamic_ind = [3, 4, 5]
# this index is the number of SCM + nubmer of DCM, not number of DCM timepoints
all_ind = static_ind + dynamic_ind
num_total_measure = len(all_ind)
# meausrement names
all_names_strategy3 = [
"CA.static",
"CB.static",
"CC.static",
"CA.dynamic",
"CB.dynamic",
"CC.dynamic",
]
# define static costs in $
# CA # CB # CC # CA # CB # CC
static_cost = [2000, 2000, 2000, 200, 200, 200]
# each static-cost measure has no per-sample cost
dynamic_cost = [0] * len(static_ind)
# each dynamic-cost measure costs $ 400 per sample
dynamic_cost.extend([400] * len(dynamic_ind))
## define MeasurementData object
measure_info = MeasurementData(
all_names_strategy3, # name string
all_ind, # jac_index: measurement index in Q
static_cost, # static costs
dynamic_cost, # dynamic costs
min_interval_num, # minimal time interval between two timepoints
max_manual_num, # maximum number of timepoints for each measurement
total_max_manual_num, # maximum number of timepoints for all measurement
)
### STEP 2: Read and create Jacobian object
# error covariance matrix
error_cov = [
[1, 0.1, 0.1, 1, 0.1, 0.1],
[0.1, 4, 0.5, 0.1, 4, 0.5],
[0.1, 0.5, 8, 0.1, 0.5, 8],
[1, 0.1, 0.1, 1, 0.1, 0.1],
[0.1, 4, 0.5, 0.1, 4, 0.5],
[0.1, 0.5, 8, 0.1, 0.5, 8],
]
## change the correlation of DCM VS SCM to half the original value
# variance
var_list = [error_cov[i][i] for i in range(len(error_cov))]
# standard deviation
std_list = [np.sqrt(var_list[i]) for i in range(len(var_list))]
# Generate correlation matrix
corr_original = [[0] * len(var_list) for i in range(len(var_list))]
# compute correlation, corr[i,j] = cov[i,j]/std[i]/std[j]
for i in range(len(var_list)):
# loop over Nm
for j in range(len(var_list)):
corr_original[i][j] = error_cov[i][j] / std_list[i] / std_list[j]
# DCM-SCM correlations are half of DCM-DCM or SCM-SCM correlation
corr_num = 0.5
# loop over SCM rows
for i in range(len(static_ind)):
# loop over DCM columns
for j in range(len(static_ind), len(var_list)):
# correlation matrix is symmetric
# we make DCM-SCM correlation half of its original value
corr_original[i][j] *= corr_num
corr_original[j][i] *= corr_num
# update covariance matrix
# change back from correlation matrix
for i in range(len(var_list)):
for j in range(len(var_list)):
error_cov[i][j] = corr_original[i][j] * std_list[i] * std_list[j]
# create data object to pre-compute Qs
# read jacobian from the source csv
# Nt is the number of time points for each measurement
# This csv file looks like this:
# A1 A2 E1 E2
#Unnamed: 0
#1 -1.346695 -1.665335e-13 2.223380 -1.665335e-13
# ....
jac_info = SensitivityData("./kinetics_source_data/Q_drop0.csv", Nt)
static_measurement_index = [
0,
1,
2,
] # the index of CA, CB, CC in the jacobian array, considered as SCM
dynamic_measurement_index = [
0,
1,
2,
] # the index of CA, CB, CC in the jacobian array, also considered as DCM
jac_info.get_jac_list(
static_measurement_index, # the index of SCMs in the jacobian array
dynamic_measurement_index,
) # the index of DCMs in the jacobian array
### STEP 3: Create MeasurementOptimizer object, precomputation atom FIMs
# use MeasurementOptimizer to pre-compute the unit FIMs
calculator = MeasurementOptimizer(
jac_info, # SensitivityData object
measure_info, # MeasurementData object
error_cov=error_cov, # error covariance matrix
error_opt=CovarianceStructure.measure_correlation, # error covariance options
print_level=3, # I use highest here to see more information
)
# calculate a list of unit FIMs
calculator.assemble_unit_fims()
### STEP 4: Create and solve MO optimization framework
## The most often used options are listed as arguments here
mip_option_value = True # mixed integer problem or not
objective_value = ObjectiveLib.D # objective, ObjectiveLib.A or ObjectiveLib.D
small_element_value = 0.0001 # the small element added to the diagonal of FIM
file_store_name_value = "test_run_" # save result names with this string
# initialize with A-opt. MILP solutions
# choose what solutions to initialize from:
# minlp_D: initialize with minlp_D solutions
# milp_A: initialize with milp_A solutions
# lp_A: iniitalize with lp_A solution
# nlp_D: initialize with nlp_D solution
initializer_option_value = "lp_A"
# if run all results or just sensitivity test
rerun_all_paper_results_value = True
# choose linear solver here. Directly comment this line or give None if default linear solver is used.
linear_solver_opt_value = "ma57"
def kinetics_experiment(mip_option,
objective,
small_element=0.0001,
file_store_name="test",
initializer_option="lp_A",
rerun_all_paper_results=False,
linear_solver_opt="ma57"):
"""
This function runs the MO experiments.
Arguments
---------
mip_option: boolean, mixed integer problem or not
objective: objective function, chosen from ObjectiveLib.A or ObjectiveLib.D
small_element: scaler, the small element added to the diagonal of FIM
file_store_name: string, save result names with this string
initializer_option: string, choose what solutions to initialize from, lp_A, nlp_D, milp_A, minlp_D are options
rerun_all_paper_results: boolean, if run all results or just sensitivity test
linear_solver_opt: choose linear solver here. Directly comment this line or give None if default linear solver is used.
Return
------
None.
"""
# optimization options
fixed_nlp_opt = False
mix_obj_option = False
alpha_opt = 0.9
sparse_opt = True
fix_opt = False
num_dynamic_time = np.linspace(0, 60, 9)
static_dynamic = [[0, 3], [1, 4], [2, 5]] # These pairs cannot be chosen simultaneously
time_interval_for_all = True
# map the timepoint index to its real time
dynamic_time_dict = {}
for i, tim in enumerate(num_dynamic_time[1:]):
dynamic_time_dict[i] = np.round(tim, decimals=2)
if rerun_all_paper_results:
# give range of budgets for this case
budget_ranges = np.linspace(1000, 5000, 11)
else:
# give a trial ranges for a test; we use the first 3 budgets in budget_ranges
budget_ranges = [2200, 3800, 4600]
# ==== initialization strategy ====
# according to the initializer option, we provide different sets of initialization files
if initializer_option == "milp_A":
# all budgets
curr_results = np.linspace(1000, 5000, 11)
# initial solution file path and name
file_name_pre, file_name_end = "./kinetics_results/MILP_", "_a"
elif initializer_option == "minlp_D":
# all budgets
curr_results = np.linspace(1000, 5000, 11)
# initial solution file path and name
file_name_pre, file_name_end = "./kinetics_results/MINLP_", "_d"
elif initializer_option == "lp_A":
# all budgets
curr_results = np.linspace(1000, 5000, 41)
# initial solution file path and name
file_name_pre, file_name_end = "./kinetics_results/LP_", "_a"
elif initializer_option == "nlp_D":
# all budgets
curr_results = np.linspace(1000, 5000, 41)
# initial solution file path and name
file_name_pre, file_name_end = "./kinetics_results/NLP_", "_d"
# initialize the initial solution dict. key: budget. value: initial solution file name
# this initialization dictionary provides a more organized input format for initialization
initial_solution = {}
# loop over budget
for b in curr_results:
initial_solution[b] = file_name_pre + str(int(b)) + file_name_end
# ===== run a test for a few budgets =====
# use a starting budget to create the model
start_budget = budget_ranges[0]
# timestamp for creating pyomo model
t1 = time.time()
# call the optimizer function to formulate the model and solve for the first time
# optimizer method will 1) create the model and save as self.mod 2) initialize the model
calculator.optimizer(
start_budget, # budget
initial_solution, # a collection of initializations
mixed_integer=mip_option, # if relaxing integer decisions
obj=objective, # objective function options, A or D
mix_obj=mix_obj_option, # if mixing A- and D-optimality to be the OF
alpha=alpha_opt, # the weight of A-optimality if using mixed obj
fixed_nlp=fixed_nlp_opt, # if it is a fixed NLP problem
fix=fix_opt, # if it is a squared problem
upper_diagonal_only=sparse_opt, # if only defining upper triangle part for symmetric matrix
num_dynamic_t_name=num_dynamic_time, # number of time points of DCMs
static_dynamic_pair=static_dynamic, # if one measurement can be both SCM and DCM
time_interval_all_dynamic=time_interval_for_all, # time interval for time points of DCMs
fim_diagonal_small_element=small_element, # a small element added for FIM diagonals to avoid ill-conditioning
print_level=1,
) # print level for optimization part
# timestamp for solving pyomo model
t2 = time.time()
calculator.solve(mip_option=mip_option, objective=objective, linear_solver=linear_solver_opt)
# timestamp for finishing
t3 = time.time()
print("model and solver wall clock time:", t3 - t1)
print("solver wall clock time:", t3 - t2)
calculator.extract_store_sol(start_budget, file_store_name)
# continue to run the rest of budgets if the test goes well
for b in budget_ranges[1:]:
print("====Solving with budget:", b, "====")
# open the update toggle every time so no need to create model every time
calculator.update_budget(b)
# solve the model
calculator.solve(mip_option=mip_option, objective=objective, linear_solver=linear_solver_opt)
# extract and select solutions
calculator.extract_store_sol(b, file_store_name)
kinetics_experiment(mip_option_value,
objective_value,
small_element=small_element_value,
file_store_name=file_store_name_value,
initializer_option=initializer_option_value,
rerun_all_paper_results=rerun_all_paper_results_value,
linear_solver_opt=linear_solver_opt_value)