-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfit_predict.py
614 lines (537 loc) · 24.2 KB
/
fit_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
from __future__ import absolute_import
import argparse
import collections
import gc
import json
import os
from datetime import datetime
import torch
from catalyst.dl import SupervisedRunner, OptimizerCallback, SchedulerCallback
from catalyst.dl.callbacks import CriterionAggregatorCallback, AccuracyCallback
from catalyst.utils import load_checkpoint, unpack_checkpoint
from pytorch_toolbelt.optimization.functional import get_lr_decay_parameters
from pytorch_toolbelt.utils import fs, torch_utils
from pytorch_toolbelt.utils.catalyst import ShowPolarBatchesCallback, ConfusionMatrixCallback
from pytorch_toolbelt.utils.random import set_manual_seed
from pytorch_toolbelt.utils.torch_utils import count_parameters, transfer_weights, get_optimizable_parameters
from torch import nn
from torch.optim.lr_scheduler import CyclicLR
from torch.utils.data import DataLoader
from xview.dataset import (
INPUT_IMAGE_KEY,
OUTPUT_MASK_KEY,
INPUT_MASK_KEY,
get_datasets,
OUTPUT_MASK_4_KEY,
UNLABELED_SAMPLE,
get_pseudolabeling_dataset,
DISASTER_TYPE_KEY,
UNKNOWN_DISASTER_TYPE_CLASS,
DISASTER_TYPES,
OUTPUT_EMBEDDING_KEY,
DAMAGE_TYPE_KEY,
OUTPUT_MASK_8_KEY, OUTPUT_MASK_16_KEY, OUTPUT_MASK_32_KEY)
from xview.metric import CompetitionMetricCallback
from xview.models import get_model
from xview.optim import get_optimizer
from xview.pseudo import CEOnlinePseudolabelingCallback2d
from xview.scheduler import get_scheduler
from xview.train_utils import clean_checkpoint, report_checkpoint, get_criterion_callback
from xview.visualization import draw_predictions
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-acc", "--accumulation-steps", type=int, default=1, help="Number of batches to process")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("-v", "--verbose", action="store_true")
parser.add_argument("--fast", action="store_true")
parser.add_argument(
"-dd", "--data-dir", type=str, required=True, help="Data directory for INRIA sattelite dataset"
)
parser.add_argument("-m", "--model", type=str, default="resnet34_fpncat128", help="")
parser.add_argument("-b", "--batch-size", type=int, default=8, help="Batch Size during training, e.g. -b 64")
parser.add_argument("-e", "--epochs", type=int, default=100, help="Epoch to run")
# parser.add_argument('-es', '--early-stopping', type=int, default=None, help='Maximum number of epochs without improvement')
# parser.add_argument('-fe', '--freeze-encoder', type=int, default=0, help='Freeze encoder parameters for N epochs')
# parser.add_argument('-ft', '--fine-tune', action='store_true')
parser.add_argument("-lr", "--learning-rate", type=float, default=1e-3, help="Initial learning rate")
parser.add_argument(
"--disaster-type-loss",
type=str,
default=None, # [["ce", 1.0]],
action="append",
nargs="+",
help="Criterion for classifying disaster type",
)
parser.add_argument(
"--damage-type-loss",
type=str,
default=None, # [["bce", 1.0]],
action="append",
nargs="+",
help="Criterion for classifying presence of building with particular damage type",
)
parser.add_argument("-l", "--criterion", type=str, default=None, action="append", nargs="+", help="Criterion")
parser.add_argument("--mask4", type=str, default=None, action="append", nargs="+", help="Criterion for mask with stride 4")
parser.add_argument("--mask8", type=str, default=None, action="append", nargs="+", help="Criterion for mask with stride 8")
parser.add_argument("--mask16", type=str, default=None, action="append", nargs="+", help="Criterion for mask with stride 16")
parser.add_argument("--mask32", type=str, default=None, action="append", nargs="+", help="Criterion for mask with stride 32")
parser.add_argument("--embedding", type=str, default=None)
parser.add_argument("-o", "--optimizer", default="RAdam", help="Name of the optimizer")
parser.add_argument(
"-c", "--checkpoint", type=str, default=None, help="Checkpoint filename to use as initial model weights"
)
parser.add_argument("-w", "--workers", default=8, type=int, help="Num workers")
parser.add_argument("-a", "--augmentations", default="safe", type=str, help="Level of image augmentations")
parser.add_argument("--transfer", default=None, type=str, help="")
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--size", default=512, type=int)
parser.add_argument("--fold", default=0, type=int)
parser.add_argument("-s", "--scheduler", default="multistep", type=str, help="")
parser.add_argument("-x", "--experiment", default=None, type=str, help="")
parser.add_argument("-d", "--dropout", default=0.0, type=float, help="Dropout before head layer")
parser.add_argument("--opl", action="store_true")
parser.add_argument(
"--warmup", default=0, type=int, help="Number of warmup epochs with reduced LR on encoder parameters"
)
parser.add_argument("-wd", "--weight-decay", default=0, type=float, help="L2 weight decay")
parser.add_argument("--show", action="store_true")
parser.add_argument("--dsv", action="store_true")
parser.add_argument("--balance", action="store_true")
parser.add_argument("--only-buildings", action="store_true")
parser.add_argument("--freeze-bn", action="store_true")
parser.add_argument("--crops", action="store_true", help="Train on random crops")
parser.add_argument("--post-transform", action="store_true")
args = parser.parse_args()
set_manual_seed(args.seed)
data_dir = args.data_dir
num_workers = args.workers
num_epochs = args.epochs
learning_rate = args.learning_rate
model_name = args.model
optimizer_name = args.optimizer
image_size = args.size, args.size
fast = args.fast
augmentations = args.augmentations
fp16 = args.fp16
scheduler_name = args.scheduler
experiment = args.experiment
dropout = args.dropout
online_pseudolabeling = args.opl
segmentation_losses = args.criterion
verbose = args.verbose
warmup = args.warmup
show = args.show
accumulation_steps = args.accumulation_steps
weight_decay = args.weight_decay
fold = args.fold
balance = args.balance
only_buildings = args.only_buildings
freeze_bn = args.freeze_bn
train_on_crops = args.crops
enable_post_image_transform = args.post_transform
disaster_type_loss = args.disaster_type_loss
train_batch_size = args.batch_size
embedding_criterion = args.embedding
damage_type_loss = args.damage_type_loss
# Compute batch size for validaion
if train_on_crops:
valid_batch_size = max(1, (train_batch_size * (image_size[0] * image_size[1])) // (1024 ** 2))
else:
valid_batch_size = train_batch_size
run_train = num_epochs > 0
model: nn.Module = get_model(model_name, dropout=dropout).cuda()
if args.transfer:
transfer_checkpoint = fs.auto_file(args.transfer)
print("Transfering weights from model checkpoint", transfer_checkpoint)
checkpoint = load_checkpoint(transfer_checkpoint)
pretrained_dict = checkpoint["model_state_dict"]
transfer_weights(model, pretrained_dict)
if args.checkpoint:
checkpoint = load_checkpoint(fs.auto_file(args.checkpoint))
unpack_checkpoint(checkpoint, model=model)
print("Loaded model weights from:", args.checkpoint)
report_checkpoint(checkpoint)
if freeze_bn:
torch_utils.freeze_bn(model)
print("Freezing bn params")
runner = SupervisedRunner(input_key=INPUT_IMAGE_KEY, output_key=None)
main_metric = "weighted_f1"
cmd_args = vars(args)
current_time = datetime.now().strftime("%b%d_%H_%M")
checkpoint_prefix = f"{current_time}_{args.model}_{args.size}_fold{fold}"
if fp16:
checkpoint_prefix += "_fp16"
if fast:
checkpoint_prefix += "_fast"
if online_pseudolabeling:
checkpoint_prefix += "_opl"
if train_on_crops:
checkpoint_prefix += "_crops"
if experiment is not None:
checkpoint_prefix = experiment
log_dir = os.path.join("runs", checkpoint_prefix)
os.makedirs(log_dir, exist_ok=False)
config_fname = os.path.join(log_dir, f"{checkpoint_prefix}.json")
with open(config_fname, "w") as f:
train_session_args = vars(args)
f.write(json.dumps(train_session_args, indent=2))
default_callbacks = [
CompetitionMetricCallback(input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_KEY, prefix="weighted_f1"),
ConfusionMatrixCallback(
input_key=INPUT_MASK_KEY,
output_key=OUTPUT_MASK_KEY,
class_names=["land", "no_damage", "minor_damage", "major_damage", "destroyed"],
ignore_index=UNLABELED_SAMPLE,
),
]
if show:
default_callbacks += [
ShowPolarBatchesCallback(draw_predictions, metric=main_metric + "_batch", minimize=False)
]
train_ds, valid_ds, train_sampler = get_datasets(
data_dir=data_dir,
image_size=image_size,
augmentation=augmentations,
fast=fast,
fold=fold,
balance=balance,
only_buildings=only_buildings,
train_on_crops=train_on_crops,
enable_post_image_transform=enable_post_image_transform,
)
# Pretrain/warmup
if warmup:
callbacks = default_callbacks.copy()
criterions_dict = {}
losses = []
for criterion in segmentation_losses:
if isinstance(criterion, (list, tuple)):
loss_name, loss_weight = criterion
else:
loss_name, loss_weight = criterion, 1.0
cd, criterion, criterion_name = get_criterion_callback(
loss_name, input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_KEY, loss_weight=float(loss_weight)
)
criterions_dict.update(cd)
callbacks.append(criterion)
losses.append(criterion_name)
print("Using loss", loss_name, loss_weight)
if args.mask4 is not None:
for criterion in args.mask4:
if isinstance(criterion, (list, tuple)):
loss_name, loss_weight = criterion
else:
loss_name, loss_weight = criterion, 1.0
cd, criterion, criterion_name = get_criterion_callback(
loss_name, input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_4_KEY, loss_weight=float(loss_weight)
)
criterions_dict.update(cd)
callbacks.append(criterion)
losses.append(criterion_name)
print("Using loss", loss_name, loss_weight)
callbacks += [
CriterionAggregatorCallback(prefix="loss", loss_keys=losses),
OptimizerCallback(accumulation_steps=accumulation_steps, decouple_weight_decay=False),
]
parameters = get_lr_decay_parameters(model.named_parameters(), learning_rate, {"encoder": 0.1})
optimizer = get_optimizer("RAdam", parameters, learning_rate=learning_rate * 0.1)
loaders = collections.OrderedDict()
loaders["train"] = DataLoader(
train_ds,
batch_size=train_batch_size,
num_workers=num_workers,
pin_memory=True,
drop_last=True,
shuffle=train_sampler is None,
sampler=train_sampler,
)
loaders["valid"] = DataLoader(valid_ds, batch_size=valid_batch_size, num_workers=num_workers, pin_memory=True)
runner.train(
fp16=fp16,
model=model,
criterion=criterions_dict,
optimizer=optimizer,
scheduler=None,
callbacks=callbacks,
loaders=loaders,
logdir=os.path.join(log_dir, "warmup"),
num_epochs=warmup,
verbose=verbose,
main_metric=main_metric,
minimize_metric=False,
checkpoint_data={"cmd_args": cmd_args},
)
del optimizer, loaders
best_checkpoint = os.path.join(log_dir, "warmup", "checkpoints", "best.pth")
model_checkpoint = os.path.join(log_dir, "warmup", "checkpoints", f"{checkpoint_prefix}_warmup.pth")
clean_checkpoint(best_checkpoint, model_checkpoint)
torch.cuda.empty_cache()
gc.collect()
if run_train:
loaders = collections.OrderedDict()
callbacks = default_callbacks.copy()
criterions_dict = {}
losses = []
if online_pseudolabeling:
unlabeled_label = get_pseudolabeling_dataset(
data_dir, include_masks=False, image_size=image_size, augmentation=None
)
unlabeled_train = get_pseudolabeling_dataset(
data_dir,
include_masks=True,
image_size=image_size,
augmentation=augmentations,
train_on_crops=train_on_crops,
enable_post_image_transform=enable_post_image_transform,
)
loaders["label"] = DataLoader(
unlabeled_label, batch_size=valid_batch_size, num_workers=num_workers, pin_memory=True
)
train_ds = train_ds + unlabeled_train
train_sampler = None
callbacks += [
CEOnlinePseudolabelingCallback2d(
unlabeled_train,
pseudolabel_loader="label",
prob_threshold=0.75,
output_key=OUTPUT_MASK_KEY,
unlabeled_class=UNLABELED_SAMPLE,
label_frequency=5,
)
]
print("Using online pseudolabeling with ", len(unlabeled_label), "samples")
loaders["train"] = DataLoader(
train_ds,
batch_size=train_batch_size,
num_workers=num_workers,
pin_memory=True,
drop_last=True,
shuffle=train_sampler is None,
sampler=train_sampler,
)
loaders["valid"] = DataLoader(valid_ds, batch_size=valid_batch_size, num_workers=num_workers, pin_memory=True)
# Create losses
for criterion in segmentation_losses:
if isinstance(criterion, (list, tuple)) and len(criterion) == 2:
loss_name, loss_weight = criterion
else:
loss_name, loss_weight = criterion[0], 1.0
cd, criterion, criterion_name = get_criterion_callback(
loss_name,
prefix="segmentation",
input_key=INPUT_MASK_KEY,
output_key=OUTPUT_MASK_KEY,
loss_weight=float(loss_weight),
)
criterions_dict.update(cd)
callbacks.append(criterion)
losses.append(criterion_name)
print(INPUT_MASK_KEY, "Using loss", loss_name, loss_weight)
if args.mask4 is not None:
for criterion in args.mask4:
if isinstance(criterion, (list, tuple)):
loss_name, loss_weight = criterion
else:
loss_name, loss_weight = criterion, 1.0
cd, criterion, criterion_name = get_criterion_callback(
loss_name,
prefix="mask4",
input_key=INPUT_MASK_KEY,
output_key=OUTPUT_MASK_4_KEY,
loss_weight=float(loss_weight),
)
criterions_dict.update(cd)
callbacks.append(criterion)
losses.append(criterion_name)
print(OUTPUT_MASK_4_KEY, "Using loss", loss_name, loss_weight)
if args.mask8 is not None:
for criterion in args.mask8:
if isinstance(criterion, (list, tuple)):
loss_name, loss_weight = criterion
else:
loss_name, loss_weight = criterion, 1.0
cd, criterion, criterion_name = get_criterion_callback(
loss_name,
prefix="mask8",
input_key=INPUT_MASK_KEY,
output_key=OUTPUT_MASK_8_KEY,
loss_weight=float(loss_weight),
)
criterions_dict.update(cd)
callbacks.append(criterion)
losses.append(criterion_name)
print(OUTPUT_MASK_8_KEY, "Using loss", loss_name, loss_weight)
if args.mask16 is not None:
for criterion in args.mask16:
if isinstance(criterion, (list, tuple)):
loss_name, loss_weight = criterion
else:
loss_name, loss_weight = criterion, 1.0
cd, criterion, criterion_name = get_criterion_callback(
loss_name,
prefix="mask16",
input_key=INPUT_MASK_KEY,
output_key=OUTPUT_MASK_16_KEY,
loss_weight=float(loss_weight),
)
criterions_dict.update(cd)
callbacks.append(criterion)
losses.append(criterion_name)
print(OUTPUT_MASK_16_KEY, "Using loss", loss_name, loss_weight)
if args.mask32 is not None:
for criterion in args.mask32:
if isinstance(criterion, (list, tuple)):
loss_name, loss_weight = criterion
else:
loss_name, loss_weight = criterion, 1.0
cd, criterion, criterion_name = get_criterion_callback(
loss_name,
prefix="mask32",
input_key=INPUT_MASK_KEY,
output_key=OUTPUT_MASK_32_KEY,
loss_weight=float(loss_weight),
)
criterions_dict.update(cd)
callbacks.append(criterion)
losses.append(criterion_name)
print(OUTPUT_MASK_32_KEY, "Using loss", loss_name, loss_weight)
if disaster_type_loss is not None:
callbacks += [
ConfusionMatrixCallback(
input_key=DISASTER_TYPE_KEY,
output_key=DISASTER_TYPE_KEY,
class_names=DISASTER_TYPES,
ignore_index=UNKNOWN_DISASTER_TYPE_CLASS,
prefix=f"{DISASTER_TYPE_KEY}/confusion_matrix",
),
AccuracyCallback(
input_key=DISASTER_TYPE_KEY,
output_key=DISASTER_TYPE_KEY,
prefix=f"{DISASTER_TYPE_KEY}/accuracy",
activation="Softmax",
),
]
for criterion in disaster_type_loss:
if isinstance(criterion, (list, tuple)):
loss_name, loss_weight = criterion
else:
loss_name, loss_weight = criterion, 1.0
cd, criterion, criterion_name = get_criterion_callback(
loss_name,
prefix=DISASTER_TYPE_KEY,
input_key=DISASTER_TYPE_KEY,
output_key=DISASTER_TYPE_KEY,
loss_weight=float(loss_weight),
ignore_index=UNKNOWN_DISASTER_TYPE_CLASS,
)
criterions_dict.update(cd)
callbacks.append(criterion)
losses.append(criterion_name)
print(DISASTER_TYPE_KEY, "Using loss", loss_name, loss_weight)
if damage_type_loss is not None:
callbacks += [
# MultilabelConfusionMatrixCallback(
# input_key=DAMAGE_TYPE_KEY,
# output_key=DAMAGE_TYPE_KEY,
# class_names=DAMAGE_TYPES,
# prefix=f"{DAMAGE_TYPE_KEY}/confusion_matrix",
# ),
AccuracyCallback(
input_key=DAMAGE_TYPE_KEY,
output_key=DAMAGE_TYPE_KEY,
prefix=f"{DAMAGE_TYPE_KEY}/accuracy",
activation="Sigmoid",
threshold=0.5,
)
]
for criterion in damage_type_loss:
if isinstance(criterion, (list, tuple)):
loss_name, loss_weight = criterion
else:
loss_name, loss_weight = criterion, 1.0
cd, criterion, criterion_name = get_criterion_callback(
loss_name,
prefix=DAMAGE_TYPE_KEY,
input_key=DAMAGE_TYPE_KEY,
output_key=DAMAGE_TYPE_KEY,
loss_weight=float(loss_weight),
)
criterions_dict.update(cd)
callbacks.append(criterion)
losses.append(criterion_name)
print(DAMAGE_TYPE_KEY, "Using loss", loss_name, loss_weight)
if embedding_criterion is not None:
cd, criterion, criterion_name = get_criterion_callback(
embedding_criterion,
prefix="embedding",
input_key=INPUT_MASK_KEY,
output_key=OUTPUT_EMBEDDING_KEY,
loss_weight=1.0,
)
criterions_dict.update(cd)
callbacks.append(criterion)
losses.append(criterion_name)
print(OUTPUT_EMBEDDING_KEY, "Using loss", embedding_criterion)
callbacks += [
CriterionAggregatorCallback(prefix="loss", loss_keys=losses),
OptimizerCallback(accumulation_steps=accumulation_steps, decouple_weight_decay=False),
]
optimizer = get_optimizer(
optimizer_name, get_optimizable_parameters(model), learning_rate, weight_decay=weight_decay
)
scheduler = get_scheduler(
scheduler_name, optimizer, lr=learning_rate, num_epochs=num_epochs, batches_in_epoch=len(loaders["train"])
)
if isinstance(scheduler, CyclicLR):
callbacks += [SchedulerCallback(mode="batch")]
print("Train session :", checkpoint_prefix)
print(" FP16 mode :", fp16)
print(" Fast mode :", args.fast)
print(" Epochs :", num_epochs)
print(" Workers :", num_workers)
print(" Data dir :", data_dir)
print(" Log dir :", log_dir)
print("Data ")
print(" Augmentations :", augmentations)
print(" Train size :", len(loaders["train"]), len(train_ds))
print(" Valid size :", len(loaders["valid"]), len(valid_ds))
print(" Image size :", image_size)
print(" Train on crops :", train_on_crops)
print(" Balance :", balance)
print(" Buildings only :", only_buildings)
print(" Post transform :", enable_post_image_transform)
print("Model :", model_name)
print(" Parameters :", count_parameters(model))
print(" Dropout :", dropout)
print("Optimizer :", optimizer_name)
print(" Learning rate :", learning_rate)
print(" Weight decay :", weight_decay)
print(" Scheduler :", scheduler_name)
print(" Batch sizes :", train_batch_size, valid_batch_size)
print(" Criterion :", segmentation_losses)
print(" Damage type :", damage_type_loss)
print(" Disaster type :", disaster_type_loss)
print(" Embedding :", embedding_criterion)
# model training
runner.train(
fp16=fp16,
model=model,
criterion=criterions_dict,
optimizer=optimizer,
scheduler=scheduler,
callbacks=callbacks,
loaders=loaders,
logdir=os.path.join(log_dir, "main"),
num_epochs=num_epochs,
verbose=verbose,
main_metric=main_metric,
minimize_metric=False,
checkpoint_data={"cmd_args": vars(args)},
)
# Training is finished. Let's run predictions using best checkpoint weights
best_checkpoint = os.path.join(log_dir, "main", "checkpoints", "best.pth")
model_checkpoint = os.path.join(log_dir, "main", "checkpoints", f"{checkpoint_prefix}.pth")
clean_checkpoint(best_checkpoint, model_checkpoint)
del optimizer, loaders
if __name__ == "__main__":
main()