-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupload_usage
executable file
·84 lines (72 loc) · 2.62 KB
/
upload_usage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/cephfs/covid/bham/wilkisaj/.conda/envs/std/bin/python
import os
import sys
import pandas as pd
import numpy as np
import glob
import humanize
import argparse
import math
from rich.console import Console
from rich.table import Table
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--threshold", help="Minimum directory size to return (in gigabtyes e.g. 100)", type=int, metavar="")
parser.add_argument("-w", "--worst_offenders", help="Display only the top n users", type=int, metavar="")
parser.add_argument("-c", "--colour_thresholds", help="Set the colour thresholds in gigabtyes", metavar="5000,1000,500")
args = parser.parse_args()
if args.colour_thresholds:
colour_split = args.colour_thresholds.split(",")
red = int(colour_split[0])
orange = int(colour_split[1])
yellow = int(colour_split[2])
else:
red = 5000
orange = 1000
yellow = 500
colour_thresholds = {"red":red*1000000000, "orange":orange*1000000000,"yellow":yellow*1000000000}
def get_user_usage_df():
directories = glob.glob('/cephfs/covid/bham/*/upload/', recursive=False)
usage = [[], [], [], []]
for path in directories:
usage[0].append(path.split("/")[4])
steam = os.popen('getfattr -d --absolute-names --only-values --m ceph.dir.rbytes %s' %(path))
bytes = steam.read()
usage[1].append(bytes)
usage[2].append(humanize.naturalsize(bytes))
if int(bytes) >= colour_thresholds["red"]:
usage[3].append("bold red")
elif int(bytes) >= colour_thresholds["orange"]:
usage[3].append("red")
elif int(bytes) >= colour_thresholds["yellow"]:
usage[3].append("yellow")
else:
usage[3].append("green")
stacked = np.column_stack(usage)
df = pd.DataFrame(stacked, columns=["User", "Usage_bytes", "Usage_readable", "Colour"])
df["Usage_bytes"] = pd.to_numeric(df["Usage_bytes"])
df.sort_values(by="Usage_bytes", ascending=False, inplace=True)
df = df.loc[df["Usage_bytes"] != 0]
return df
def print_results(df):
console = Console()
table = Table(show_header=True, header_style="bold")
table.add_column("User", width=35)
table.add_column("Usage", style="bright", justify="right")
for index, row in df.iterrows():
readable = row["Usage_readable"].split(" ")
readable[0] = math.ceil(float(readable[0]))
table.add_row(row["User"], str(readable[0]) + " " + readable[1], style=row["Colour"])
console.print(table)
if args.threshold:
threshold = args.threshold * 1000000000
df = get_user_usage_df()
df = df.loc[df["Usage_bytes"] >= threshold]
print_results(df)
exit()
if args.worst_offenders:
worst_offenders = args.worst_offenders
df = get_user_usage_df()
df = df.head(worst_offenders)
print_results(df)
exit()
print_results(get_user_usage_df())