-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_model.py
49 lines (38 loc) · 1.75 KB
/
text_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import nltk
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import joblib
nltk.download('punkt')
def preprocess_texts(texts):
"""Preprocess the texts by tokenizing."""
return [' '.join(nltk.word_tokenize(text.lower())) for text in texts]
def train_text_model(X_texts, y_texts):
"""Train the text model using a Logistic Regression classifier."""
# Split data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(X_texts, y_texts, test_size=0.2, random_state=42)
# Create a text processing and classification pipeline
text_pipeline = Pipeline([
('tfidf', TfidfVectorizer(ngram_range=(1, 2), max_df=0.8, min_df=5)),
('clf', LogisticRegression(max_iter=1000, solver='lbfgs', C=1.0, class_weight='balanced'))
])
# Train the model
text_pipeline.fit(X_train, y_train)
# Evaluate the model
y_pred = text_pipeline.predict(X_val)
accuracy = accuracy_score(y_val, y_pred)
precision = precision_score(y_val, y_pred)
recall = recall_score(y_val, y_pred)
f1 = f1_score(y_val, y_pred)
print(f"Validation Accuracy: {accuracy:.4f}")
print(f"Validation Precision: {precision:.4f}")
print(f"Validation Recall: {recall:.4f}")
print(f"Validation F1 Score: {f1:.4f}")
# Save the trained model for future use
joblib.dump(text_pipeline, 'text_model.joblib')
return text_pipeline
def load_text_model(model_path='text_model.joblib'):
"""Load a pre-trained text model."""
return joblib.load(model_path)