-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSAM.py
57 lines (47 loc) · 2.12 KB
/
SAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import torch
from PIL import Image
import matplotlib.pyplot as plt
import cv2
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
sam2_checkpoint = "sam2/checkpoints/sam2.1_hiera_tiny.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_t.yaml"
def create_mask(imgPath, points, labels, ax, box_method=False): #point is the point where we floodfill from.
def show_mask(mask, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
plt.imshow(mask_image)
plt.show()
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
device = "cpu"
sam = build_sam2(model_cfg, sam2_checkpoint, device=device)
sam.to(device=device)
predictor1 = SAM2ImagePredictor(sam)
img1_path = imgPath
img1 = cv2.imread(img1_path)
predictor1.set_image(img1)
input_point = points
input_label = labels
masks_left, scores_left, logits_left = predictor1.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
img_trans = np.transpose(masks_left, (1, 2, 0))
masks_left = masks_left[0]
masked_left_img = img1*img_trans
zero_one_mask = np.ones_like(masks_left, dtype=int) * masks_left * 256
return zero_one_mask, cv2.cvtColor(masked_left_img, cv2.COLOR_BGR2RGB), masks_left