-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathregions.scad
1493 lines (1401 loc) · 71.5 KB
/
regions.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//////////////////////////////////////////////////////////////////////
// LibFile: regions.scad
// This file provides 2D Boolean set operations on polygons, where you can
// compute, for example, the intersection or union of the shape defined by point lists, producing
// a new point list. Of course, such operations may produce shapes with multiple
// components. To handle that, we use "regions" which are lists of paths representing the polygons.
// In addition to set operations, you can calculate offsets, determine whether a point is in a
// region and you can decompose a region into parts.
// Includes:
// include <BOSL2/std.scad>
// FileGroup: Advanced Modeling
// FileSummary: Offsets and Boolean geometry of 2D paths and regions.
// FileFootnotes: STD=Included in std.scad
//////////////////////////////////////////////////////////////////////
// CommonCode:
// include <BOSL2/rounding.scad>
// Section: Regions
// A region is a list of polygons meeting these conditions:
// .
// - Every polygon on the list is simple, meaning it does not intersect itself
// - Two polygons on the list do not cross each other
// - A vertex of one polygon never meets the edge of another one except at a vertex
// .
// Note that this means vertex-vertex touching between two polygons is acceptable
// to define a region. Note, however, that regions with vertex-vertex contact usually
// cannot be rendered with CGAL. See {{is_valid_region()}} for examples of valid regions and
// lists of polygons that are not regions. Note that {{is_region_simple()}} will identify
// regions with no polygon intersections at all, which should render successfully witih CGAL.
// .
// The actual geometry of the region is defined by XORing together
// all of the polygons in the list. This may sound obscure, but it simply means that nested
// boundaries make rings in the obvious fashion, and non-nested shapes simply union together.
// Checking that a list of polygons is a valid region, meaning that it satisfies all of the conditions
// above, can be a time consuming test, so it is not done automatically. It is your responsibility to ensure that your regions are
// compliant. You can construct regions by making a suitable list of polygons, or by using
// set operation function such as union() or difference(), which all acccept polygons, as
// well as regions, as their inputs. And if you must you can clean up an ill-formed region using make_region(),
// which will break up self-intersecting polygons and polygons that cross each other.
// Function: is_region()
// Synopsis: Returns true if the input appears to be a region.
// Topics: Regions, Paths, Polygons, List Handling
// See Also: is_valid_region(), is_1region(), is_region_simple()
// Usage:
// bool = is_region(x);
// Description:
// Returns true if the given item looks like a region. A region is a list of non-crossing simple polygons. This test just checks
// that the argument is a list whose first entry is a path.
function is_region(x) = is_list(x) && is_path(x.x);
// Function: is_valid_region()
// Synopsis: Returns true if the input is a valid region.
// Topics: Regions, Paths, Polygons, List Handling
// See Also: is_region(), is_1region(), is_region_simple()
// Usage:
// bool = is_valid_region(region, [eps]);
// Description:
// Returns true if the input is a valid region, meaning that it is a list of simple polygons whose segments do not cross each other.
// This test can be time consuming with regions that contain many points.
// It differs from `is_region()` which simply checks that the object is a list whose first entry is a path
// because it searches all the list polygons for any self-intersections or intersections with each other.
// Will also return true if given a single simple polygon. Use {{make_region()}} to convert sets of self-intersecting polygons into
// a region.
// Arguments:
// region = region to check
// eps = tolerance for geometric comparisons. Default: `EPSILON` = 1e-9
// Example(2D,NoAxes): In all of the examples each polygon in the region appears in a different color. Two non-intersecting squares make a valid region.
// region = [square(10), right(11,square(8))];
// rainbow(region)stroke($item, width=.2,closed=true);
// back(11)text(is_valid_region(region) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): Nested squares form a region
// region = [for(i=[3:2:10]) square(i,center=true)];
// rainbow(region)stroke($item, width=.2,closed=true);
// back(6)text(is_valid_region(region) ? "region" : "non-region", size=2,halign="center");
// Example(2D,NoAxes): Also a region:
// region= [square(10,center=true), square(5,center=true), right(10,square(7))];
// rainbow(region)stroke($item, width=.2,closed=true);
// back(8)text(is_valid_region(region) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): The squares cross each other, so not a region
// object = [square(10), move([8,8], square(8))];
// rainbow(object)stroke($item, width=.2,closed=true);
// back(17)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): A union is one way to fix the above example and get a region. (Note that union is run here on two simple polygons, which are valid regions themselves and hence acceptable inputs to union.
// region = union([square(10), move([8,8], square(8))]);
// rainbow(region)stroke($item, width=.25,closed=true);
// back(12)text(is_valid_region(region) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): Not a region due to a self-intersecting (non-simple) hourglass polygon
// object = [move([-2,-2],square(14)), [[0,0],[10,0],[0,10],[10,10]]];
// rainbow(object)stroke($item, width=.2,closed=true);
// move([-1.5,13])text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): Breaking hourglass in half fixes it. Now it's a region:
// region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,5]], [[5,5],[0,10],[10,10]]];
// rainbow(region)stroke($item, width=.2,closed=true);
// Example(2D,NoAxes): A single polygon corner touches an edge, so not a region:
// object = [[[-10,0], [-10,10], [20,10], [20,-20], [-10,-20],
// [-10,-10], [0,0], [10,-10], [10,0]]];
// rainbow(object)stroke($item, width=.3,closed=true);
// move([-4,12])text(is_valid_region(object) ? "region" : "non-region", size=3);
// Example(2D,NoAxes): Corners touch in the same polygon, so the polygon is not simple and the object is not a region.
// object = [[[0,0],[10,0],[10,10],[-10,10],[-10,0],[0,0],[-5,5],[5,5]]];
// rainbow(object)stroke($item, width=.3,closed=true);
// move([-10,12])text(is_valid_region(object) ? "region" : "non-region", size=3);
// Example(2D,NoAxes): The shape above as a valid region with two polygons:
// region = [ [[0,0],[10,0],[10,10],[-10,10],[-10,0]],
// [[0,0],[5,5],[-5,5]] ];
// rainbow(region)stroke($item, width=.3,closed=true);
// move([-5.5,12])text(is_valid_region(region) ? "region" : "non-region", size=3);
// Example(2D,NoAxes): As with the "broken" hourglass, Touching at corners is OK. This is a region.
// region = [square(10), move([10,10], square(8))];
// rainbow(region)stroke($item, width=.25,closed=true);
// back(12)text(is_valid_region(region) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): These two squares share part of an edge, hence not a region
// object = [square(10), move([10,2], square(7))];
// stroke(object[0], width=0.2,closed=true);
// color("red")dashed_stroke(object[1], width=0.25,closed=true);
// back(12)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): These two squares share a full edge, hence not a region
// object = [square(10), right(10, square(10))];
// stroke(object[0], width=0.2,closed=true);
// color("red")dashed_stroke(object[1], width=0.25,closed=true);
// back(12)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): Sharing on edge on the inside, also not a regionn
// object = [square(10), [[0,0], [2,2],[2,8],[0,10]]];
// stroke(object[0], width=0.2,closed=true);
// color("red")dashed_stroke(object[1], width=0.25,closed=true);
// back(12)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): Crossing at vertices is also bad
// object = [square(10), [[10,0],[0,10],[8,13],[13,8]]];
// rainbow(object)stroke($item, width=.2,closed=true);
// back(14)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): One polygon touches another in the middle of an edge
// object = [square(10), [[10,5],[15,0],[15,10]]];
// rainbow(object)stroke($item, width=.2,closed=true);
// back(11)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): The polygon touches the side, but the side has a vertex at the contact point so this is a region
// poly1 = [ each square(30,center=true), [15,0]];
// poly2 = right(10,circle(5,$fn=4));
// poly3 = left(0,circle(5,$fn=4));
// poly4 = move([0,-8],square([10,3]));
// region = [poly1,poly2,poly3,poly4];
// rainbow(region)stroke($item, width=.25,closed=true);
// move([-5,16.5])text(is_valid_region(region) ? "region" : "non-region", size=3);
// color("black")move_copies(region[0]) circle(r=.4);
// Example(2D,NoAxes): The polygon touches the side, but not at a vertex so this is not a region
// poly1 = fwd(4,[ each square(30,center=true), [15,0]]);
// poly2 = right(10,circle(5,$fn=4));
// poly3 = left(0,circle(5,$fn=4));
// poly4 = move([0,-8],square([10,3]));
// object = [poly1,poly2,poly3,poly4];
// rainbow(object)stroke($item, width=.25,closed=true);
// move([-9,12.5])text(is_valid_region(object) ? "region" : "non-region", size=3);
// color("black")move_copies(object[0]) circle(r=.4);
// Example(2D,NoAxes): The inner polygon touches the middle of the edges, so not a region
// poly1 = square(20,center=true);
// poly2 = circle(10,$fn=8);
// object=[poly1,poly2];
// rainbow(object)stroke($item, width=.25,closed=true);
// move([-10,11.4])text(is_valid_region(object) ? "region" : "non-region", size=3);
// Example(2D,NoAxes): The above shape made into a region using {{difference()}} now has four components that touch at corners
// poly1 = square(20,center=true);
// poly2 = circle(10,$fn=8);
// region = difference(poly1,poly2);
// rainbow(region)stroke($item, width=.25,closed=true);
// move([-5,11.4])text(is_valid_region(region) ? "region" : "non-region", size=3);
function is_valid_region(region, eps=EPSILON) =
let(region=force_region(region))
assert(is_region(region), "Input is not a region")
// no short paths
[for(p=region) if (len(p)<3) 1] == []
&&
// all paths are simple
[for(p=region) if (!is_path_simple(p,closed=true,eps=eps)) 1] == []
&&
// paths do not cross each other
[for(i=[0:1:len(region)-2])
if (_polygon_crosses_region(list_tail(region,i+1),region[i], eps=eps)) 1] == []
&&
// one path doesn't touch another in the middle of an edge
[for(i=idx(region), j=idx(region))
if (i!=j) for(v=region[i], edge=pair(region[j],wrap=true))
let(
v1 = edge[1]-edge[0],
v0 = v - edge[0],
t = v0*v1/(v1*v1)
)
if (abs(cross(v0,v1))<eps*norm(v1) && t>eps && t<1-eps) 1
]==[];
// internal function:
// returns true if the polygon crosses the region so that part of the
// polygon is inside the region and part is outside.
function _polygon_crosses_region(region, poly, eps=EPSILON) =
let(
subpaths = flatten(split_region_at_region_crossings(region,[poly],eps=eps)[1])
)
[for(path=subpaths)
let(isect=
[for (subpath = subpaths)
let(
midpt = mean([subpath[0], subpath[1]]),
rel = point_in_region(midpt,region,eps=eps)
)
rel
])
if (!all_equal(isect) || isect[0]==0) 1 ] != [];
// Function: is_region_simple()
// Synopsis: Returns true if the input is a region with no corner contact.
// Topics: Regions, Paths, Polygons, List Handling
// See Also: is_region(), is_valid_region(), is_1region()
// Usage:
// bool = is_region_simple(region, [eps]);
// Description:
// We extend the notion of the simple path to regions: a simple region is entirely
// non-self-intersecting, meaning that it is formed from a list of simple polygons that
// don't intersect each other at all—not even with corner contact points.
// Regions with corner contact are valid but may fail CGAL. Simple regions
// should not create problems with CGAL.
// Arguments:
// region = region to check
// eps = tolerance for geometric comparisons. Default: `EPSILON` = 1e-9
// Example(2D,NoAxes): Corner contact means it's not simple
// region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,5]], [[5,5],[0,10],[10,10]]];
// rainbow(region)stroke($item, width=.2,closed=true);
// move([-1,13])text(is_region_simple(region) ? "simple" : "not-simple", size=2);
// Example(2D,NoAxes): Moving apart the triangles makes it simple:
// region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,4.5]], [[5,5.5],[0,10],[10,10]]];
// rainbow(region)stroke($item, width=.2,closed=true);
// move([1,13])text(is_region_simple(region) ? "simple" : "not-simple", size=2);
function is_region_simple(region, eps=EPSILON) =
let(region=force_region(region))
assert(is_region(region), "Input is not a region")
[for(p=region) if (!is_path_simple(p,closed=true,eps=eps)) 1] == []
&&
[for(i=[0:1:len(region)-2])
if (_region_region_intersections([region[i]], list_tail(region,i+1), eps=eps)[0][0] != []) 1
] ==[];
// Function: make_region()
// Synopsis: Converts lists of intersecting polygons into valid regions.
// SynTags: Region
// Topics: Regions, Paths, Polygons, List Handling
// See Also: force_region(), region()
//
// Usage:
// region = make_region(polys, [nonzero], [eps]);
// Description:
// Takes a list of polygons that may intersect themselves or cross each other
// and converts it into a properly defined region without these defects.
// Arguments:
// polys = list of polygons to use
// nonzero = set to true to use nonzero rule for polygon membership. Default: false
// eps = Epsilon for geometric comparisons. Default: `EPSILON` (1e-9)
// Example(2D,NoAxes): The pentagram is self-intersecting, so it is not a region. Here it becomes five triangles:
// pentagram = turtle(["move",100,"left",144], repeat=4);
// region = make_region(pentagram);
// rainbow(region)stroke($item, width=1,closed=true);
// Example(2D,NoAxes): Alternatively with the nonzero option you can get the perimeter:
// pentagram = turtle(["move",100,"left",144], repeat=4);
// region = make_region(pentagram,nonzero=true);
// rainbow(region)stroke($item, width=1,closed=true);
// Example(2D,NoAxes): Two crossing squares become two L-shaped components
// region = make_region([square(10), move([5,5],square(8))]);
// rainbow(region)stroke($item, width=.3,closed=true);
function make_region(polys,nonzero=false,eps=EPSILON) =
let(polys=force_region(polys))
assert(is_region(polys), "Input is not a region")
exclusive_or(
[for(poly=polys) each polygon_parts(poly,nonzero,eps)],
eps=eps);
// Function: force_region()
// Synopsis: Given a polygon returns a region.
// SynTags: Region
// Topics: Regions, Paths, Polygons, List Handling
// See Also: make_region(), region()
// Usage:
// region = force_region(poly)
// Description:
// If the input is a polygon then return it as a region. Otherwise return it unaltered.
// Arguments:
// poly = polygon to turn into a region
function force_region(poly) = is_path(poly) ? [poly] : poly;
// Section: Turning a region into geometry
// Module: region()
// Synopsis: Creates the 2D polygons described by the given region or list of polygons.
// SynTags: Geom
// Topics: Regions, Paths, Polygons, List Handling
// See Also: make_region(), debug_region()
// Usage:
// region(r, [anchor], [spin=], [cp=], [atype=]) [ATTACHMENTS];
// Description:
// Creates the 2D polygons described by the given region or list of polygons. This module works on
// arbitrary lists of polygons that cross each other and hence do not define a valid region. The
// displayed result is the exclusive-or of the polygons listed in the input.
// Arguments:
// r = region to create as geometry
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"`
// ---
// spin = Rotate this many degrees after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 2D point. Default: "centroid"
// atype = Set to "hull" or "intersect" to select anchor type. Default: "hull"
// Named Anchors:
// "origin" = The native position of the region.
// Anchor Types:
// "hull" = Anchors to the virtual convex hull of the region.
// "intersect" = Anchors to the outer edge of the region.
// Example(2D): Displaying a region
// region([circle(d=50), square(25,center=true)]);
// Example(2D): Displaying a list of polygons that intersect each other, which is not a region
// rgn = concat(
// [for (d=[50:-10:10]) circle(d=d-5)],
// [square([60,10], center=true)]
// );
// region(rgn);
module region(r, anchor="origin", spin=0, cp="centroid", atype="hull")
{
assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"");
r = force_region(r);
dummy=assert(is_region(r), "Input is not a region");
points = flatten(r);
lengths = [for(path=r) len(path)];
starts = [0,each cumsum(lengths)];
paths = [for(i=idx(r)) count(s=starts[i], n=lengths[i])];
attachable(anchor, spin, two_d=true, region=r, extent=atype=="hull", cp=cp){
polygon(points=points, paths=paths);
children();
}
}
// Module: debug_region()
// Synopsis: Draws an annotated region.
// SynTags: Geom
// Topics: Shapes (2D)
// See Also: region(), debug_polygon(), debug_vnf(), debug_bezier()
//
// Usage:
// debug_region(region, [vertices=], [edges=], [convexity=], [size=]);
// Description:
// A replacement for {{region()}} that displays the region and labels the vertices and
// edges. The region vertices and edges are labeled with letters to identify the path
// component in the region, starting with A.
// The start of each path is marked with a blue circle and the end with a pink diamond.
// You can suppress the display of vertex or edge labeling using the `vertices` and `edges` arguments.
// Arguments:
// region = region to display
// ---
// vertices = if true display vertex labels and start/end markers. Default: true
// edges = if true display edge labels. Default: true
// convexity = The max number of walls a ray can pass through the given polygon paths.
// size = The base size of the line and labels.
// Example(2D,Big):
// region = make_region([square(15), move([5,5],square(15))]);
// debug_region(region,size=1);
module debug_region(region, vertices=true, edges=true, convexity=2, size=1)
{
if (is_path(region) || (is_region(region) && len(region)==1))
debug_polygon(force_path(region), vertices=vertices, edges=edges, convexity=convexity, size=size);
else {
for(i=idx(region))
echo(str("points_",chr(97+i)," = ",region[i]))
linear_extrude(height=0.01, convexity=convexity, center=true)
region(region);
if(vertices)
_debug_poly_verts(region,size);
for(j=idx(region)){
if(edges)
_debug_poly_edges(j,region[j],vertices=vertices,size=size);
}
}
}
// Section: Geometrical calculations with regions
// Function: point_in_region()
// Synopsis: Tests if a point is inside, outside, or on the border of a region.
// Topics: Regions, Points, Comparison
// See Also: region_area(), are_regions_equal()
// Usage:
// check = point_in_region(point, region, [eps]);
// Description:
// Tests if a point is inside, outside, or on the border of a region.
// Returns -1 if the point is outside the region.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies inside the region.
// Arguments:
// point = The point to test.
// region = The region to test against, as a list of polygon paths.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D,Med): Red points are in the region.
// region = [for(i=[2:4:10]) hexagon(r=i)];
// color("#ff7") region(region);
// for(x=[-10:10], y=[-10:10])
// if (point_in_region([x,y], region)>=0)
// move([x,y]) color("red") circle(0.15, $fn=12);
// else
// move([x,y]) color("#ddf") circle(0.1, $fn=12);
function point_in_region(point, region, eps=EPSILON) =
let(region=force_region(region))
assert(is_region(region), "Region given to point_in_region is not a region")
assert(is_vector(point,2), "Point must be a 2D point in point_in_region")
_point_in_region(point, region, eps);
function _point_in_region(point, region, eps=EPSILON, i=0, cnt=0) =
i >= len(region) ? ((cnt%2==1)? 1 : -1)
: let(
pip = point_in_polygon(point, region[i], eps=eps)
)
pip == 0 ? 0
: _point_in_region(point, region, eps=eps, i=i+1, cnt = cnt + (pip>0? 1 : 0));
// Function: region_area()
// Synopsis: Computes the area of the specified valid region.
// Topics: Regions, Area
// Usage:
// area = region_area(region);
// Description:
// Computes the area of the specified valid region. (If the region is invalid and has self intersections
// the result is meaningless.)
// Arguments:
// region = region whose area to compute
// Examples:
// area = region_area([square(10), right(20,square(8))]); // Returns 164
function region_area(region) =
assert(is_region(region), "Input must be a region")
let(
parts = region_parts(region)
)
-sum([for(R=parts, poly=R) polygon_area(poly,signed=true)]);
function _clockwise_region(r) = [for(p=r) clockwise_polygon(p)];
// Function: are_regions_equal()
// Synopsis: Returns true if given regions are the same polygons.
// Topics: Regions, Polygons, Comparison
// Usage:
// b = are_regions_equal(region1, region2, [either_winding])
// Description:
// Returns true if the components of region1 and region2 are the same polygons (in any order).
// Arguments:
// region1 = first region
// region2 = second region
// either_winding = if true then two shapes test equal if they wind in opposite directions. Default: false
function are_regions_equal(region1, region2, either_winding=false) =
let(
region1=force_region(region1),
region2=force_region(region2)
)
assert(is_region(region1) && is_region(region2), "One of the inputs is not a region")
len(region1) != len(region2)? false :
__are_regions_equal(either_winding?_clockwise_region(region1):region1,
either_winding?_clockwise_region(region2):region2,
0);
function __are_regions_equal(region1, region2, i) =
i >= len(region1)? true :
!_is_polygon_in_list(region1[i], region2)? false :
__are_regions_equal(region1, region2, i+1);
/// Internal Function: _region_region_intersections()
/// Usage:
/// risect = _region_region_intersections(region1, region2, [closed1], [closed2], [eps]
/// Description:
/// Returns a pair of sorted lists such that risect[0] is a list of intersection
/// points for every path in region1, and similarly risect[1] is a list of intersection
/// points for the paths in region2. For each path the intersection list is
/// a sorted list of the form [PATHIND, SEGMENT, U]. You can specify that the paths in either
/// region be regarded as open paths if desired. Default is to treat them as
/// regions and hence the paths as closed polygons.
/// .
/// Included as intersection points are points where region1 touches itself at a vertex or
/// region2 touches itself at a vertex. (The paths are assumed to have no self crossings.
/// Self crossings of the paths in the regions are not returned.)
function _region_region_intersections(region1, region2, closed1=true,closed2=true, eps=EPSILON) =
let(
intersections = [
for(p1=idx(region1))
let(
path = closed1?list_wrap(region1[p1]):region1[p1]
)
for(i = [0:1:len(path)-2])
let(
a1 = path[i],
a2 = path[i+1],
nrm = norm(a1-a2)
)
if( nrm>eps ) // ignore zero-length path edges
let(
seg_normal = [-(a2-a1).y, (a2-a1).x]/nrm,
ref = a1*seg_normal
)
// `signs[j]` is the sign of the signed distance from
// poly vertex j to the line [a1,a2] where near zero
// distances are snapped to zero; poly edges
// with equal signs at its vertices cannot intersect
// the path edge [a1,a2] or they are collinear and
// further tests can be discarded.
for(p2=idx(region2))
let(
poly = closed2?list_wrap(region2[p2]):region2[p2],
signs = [for(v=poly*seg_normal) abs(v-ref) < eps ? 0 : sign(v-ref) ]
)
if(max(signs)>=0 && min(signs)<=0) // some edge intersects line [a1,a2]
for(j=[0:1:len(poly)-2])
if(signs[j]!=signs[j+1])
let( // exclude non-crossing and collinear segments
b1 = poly[j],
b2 = poly[j+1],
isect = _general_line_intersection([a1,a2],[b1,b2],eps=eps)
)
if (isect
&& isect[1]>= -eps
&& isect[1]<= 1+eps
&& isect[2]>= -eps
&& isect[2]<= 1+eps)
[[p1,i,isect[1]], [p2,j,isect[2]]]
],
regions=[region1,region2],
// Create a flattened index list corresponding to the points in region1 and region2
// that gives each point as an intersection point
ptind = [for(i=[0:1])
[for(p=idx(regions[i]))
for(j=idx(regions[i][p])) [p,j,0]]],
points = [for(i=[0:1]) flatten(regions[i])],
// Corner points are those points where the region touches itself, hence duplicate
// points in the region's point set
cornerpts = [for(i=[0:1])
[for(k=vector_search(points[i],eps,points[i]))
each if (len(k)>1) select(ptind[i],k)]],
risect = [for(i=[0:1]) concat(column(intersections,i), cornerpts[i])],
counts = [count(len(region1)), count(len(region2))],
pathind = [for(i=[0:1]) search(counts[i], risect[i], 0)]
)
[for(i=[0:1]) [for(j=counts[i]) _sort_vectors(select(risect[i],pathind[i][j]))]];
// Section: Breaking up regions into subregions
// Function: split_region_at_region_crossings()
// Synopsis: Splits regions where polygons touch and at intersections.
// Topics: Regions, Polygons, List Handling
// See Also: region_parts()
//
// Usage:
// split_region = split_region_at_region_crossings(region1, region2, [closed1], [closed2], [eps])
// Description:
// Splits region1 at the places where polygons in region1 touches each other at corners and at locations
// where region1 intersections region2. Split region2 similarly with respect to region1.
// The return is a pair of results of the form [split1, split2] where split1=[frags1,frags2,...]
// and frags1 is a list of paths that when placed end to end (in the given order), give the first polygon of region1.
// Each path in the list is either entirely inside or entirely outside region2.
// Then frags2 is the decomposition of the second polygon into path pieces, and so on. Finally split2 is
// the same list, but for the polygons in region2.
// You can pass a single polygon in for either region, but the output will be a singleton list, as if
// you passed in a singleton region. If you set the closed parameters to false then the region components
// will be treated as open paths instead of polygons.
// Arguments:
// region1 = first region
// region2 = second region
// closed1 = if false then treat region1 as list of open paths. Default: true
// closed2 = if false then treat region2 as list of open paths. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D):
// path = square(50,center=false);
// region = [circle(d=80), circle(d=40)];
// paths = split_region_at_region_crossings(path, region);
// color("#aaa") region(region);
// rainbow(paths[0][0]) stroke($item, width=2);
// right(110){
// color("#aaa") region([path]);
// rainbow(flatten(paths[1])) stroke($item, width=2);
// }
function split_region_at_region_crossings(region1, region2, closed1=true, closed2=true, eps=EPSILON) =
let(
region1=force_region(region1),
region2=force_region(region2)
)
assert(is_region(region1) && is_region(region2),"One of the inputs is not a region")
let(
xings = _region_region_intersections(region1, region2, closed1, closed2, eps),
regions = [region1,region2],
closed = [closed1,closed2]
)
[for(i=[0:1])
[for(p=idx(xings[i]))
let(
crossings = deduplicate([
[p,0,0],
each xings[i][p],
[p,len(regions[i][p])-(closed[i]?1:2), 1],
],eps=eps),
subpaths = [
for (frag = pair(crossings))
deduplicate(
_path_select(regions[i][p], frag[0][1], frag[0][2], frag[1][1], frag[1][2], closed=closed[i]),
eps=eps
)
]
)
[for(s=subpaths) if (len(s)>1) s]
]
];
// Function: region_parts()
// Synopsis: Splits a region into a list of connected regions.
// SynTags: RegList
// Topics: Regions, List Handling
// See Also: split_region_at_region_crossings()
// Usage:
// rgns = region_parts(region);
// Description:
// Divides a region into a list of connected regions. Each connected region has exactly one clockwise outside boundary
// and zero or more counter-clockwise outlines defining internal holes. Note that behavior is undefined on invalid regions whose
// components cross each other.
// Example(2D,NoAxes):
// R = [for(i=[1:7]) square(i,center=true)];
// region_list = region_parts(R);
// rainbow(region_list) region($item);
// Example(2D,NoAxes):
// R = [back(7,square(3,center=true)),
// square([20,10],center=true),
// left(5,square(8,center=true)),
// for(i=[4:2:8])
// right(5,square(i,center=true))];
// region_list = region_parts(R);
// rainbow(region_list) region($item);
function region_parts(region) =
let(
region = force_region(region)
)
assert(is_region(region), "Input is not a region")
let(
inside = [for(i=idx(region))
let(pt = mean([region[i][0], region[i][1]]))
[for(j=idx(region)) i==j ? 0
: point_in_polygon(pt,region[j]) >=0 ? 1 : 0]
],
level = inside*repeat(1,len(region))
)
[ for(i=idx(region))
if(level[i]%2==0)
let(
possible_children = search([level[i]+1],level,0)[0],
keep=search([1], select(inside,possible_children), 0, i)[0]
)
[
clockwise_polygon(region[i]),
for(good=keep)
ccw_polygon(region[possible_children[good]])
]
];
// Section: Offset and 2D Boolean Set Operations
function _offset_chamfer(center, points, delta) =
is_undef(points[1])?
let( points = select(points,[0,2]),
center = mean(points),
dir = sign(delta)*line_normal(points),
halfside = tan(22.5)*abs(delta)
)
[ points[0]+dir*halfside,
center + dir*abs(delta) + unit(points[0]-center)*halfside,
center + dir*abs(delta) + unit(points[1]-center)*halfside,
points[1]+dir*halfside
]
:
let(
dist = sign(delta)*norm(center-line_intersection(select(points,[0,2]), [center, points[1]])),
endline = _shift_segment(select(points,[0,2]), delta-dist)
) [
line_intersection(endline, select(points,[0,1])),
line_intersection(endline, select(points,[1,2]))
];
function _shift_segment(segment, d) =
assert(!approx(segment[0],segment[1]),"Path has repeated points")
move(d*line_normal(segment),segment);
// Extend to segments to their intersection point. First check if the segments already have a point in common,
// which can happen if two colinear segments are input to the path variant of `offset()`
function _segment_extension(s1,s2) =
norm(s1[1]-s2[0])<1e-6 ? s1[1] : line_intersection(s1,s2,LINE,LINE);
function _makefaces(direction, startind, good, pointcount, closed) =
let(
lenlist = list_bset(good, pointcount),
numfirst = len(lenlist),
numsecond = sum(lenlist),
prelim_faces = _makefaces_recurse(startind, startind+len(lenlist), numfirst, numsecond, lenlist, closed)
)
direction? [for(entry=prelim_faces) reverse(entry)] : prelim_faces;
function _makefaces_recurse(startind1, startind2, numfirst, numsecond, lenlist, closed, firstind=0, secondind=0, faces=[]) =
// We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past
// the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output.
((firstind == numfirst - (closed?0:1)) && (secondind == numsecond - (closed?0:1)))? faces :
_makefaces_recurse(
startind1, startind2, numfirst, numsecond, lenlist, closed, firstind+1, secondind+lenlist[firstind],
lenlist[firstind]==0? (
// point in original path has been deleted in offset path, so it has no match. We therefore
// make a triangular face using the current point from the offset (second) path
// (The current point in the second path can be equal to numsecond if firstind is the last point)
concat(faces,[[secondind%numsecond+startind2, firstind+startind1, (firstind+1)%numfirst+startind1]])
// in this case a point or points exist in the offset path corresponding to the original path
) : (
concat(faces,
// First generate triangular faces for all of the extra points (if there are any---loop may be empty)
[for(i=[0:1:lenlist[firstind]-2]) [firstind+startind1, secondind+i+1+startind2, secondind+i+startind2]],
// Finish (unconditionally) with a quadrilateral face
[
[
firstind+startind1,
(firstind+1)%numfirst+startind1,
(secondind+lenlist[firstind])%numsecond+startind2,
(secondind+lenlist[firstind]-1)%numsecond+startind2
]
]
)
)
);
// Determine which of the shifted segments are good
function _good_segments(path, d, shiftsegs, closed, quality) =
let(
maxind = len(path)-(closed ? 1 : 2),
pathseg = [for(i=[0:maxind]) select(path,i+1)-path[i]],
pathseg_len = [for(seg=pathseg) norm(seg)],
pathseg_unit = [for(i=[0:maxind]) pathseg[i]/pathseg_len[i]],
// Order matters because as soon as a valid point is found, the test stops
// This order works better for circular paths because they succeed in the center
alpha = concat([for(i=[1:1:quality]) i/(quality+1)],[0,1])
) [
for (i=[0:len(shiftsegs)-1])
(i>maxind)? true :
_segment_good(path,pathseg_unit,pathseg_len, d - 1e-7, shiftsegs[i], alpha)
];
// Determine if a segment is good (approximately)
// Input is the path, the path segments normalized to unit length, the length of each path segment
// the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1])
// The last parameter, index, gives the current alpha index.
//
// A segment is good if any part of it is farther than distance d from the path. The test is expensive, so
// we want to quit as soon as we find a point with distance > d, hence the recursive code structure.
//
// This test is approximate because it only samples the points listed in alpha. Listing more points
// will make the test more accurate, but slower.
function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) =
index == len(alpha) ? false :
_point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true :
_segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1);
// Input is the path, the path segments normalized to unit length, the length of each path segment
// and a test point. Computes the (minimum) distance from the path to the point, taking into
// account that the minimal distance may be anywhere along a path segment, not just at the ends.
function _point_dist(path,pathseg_unit,pathseg_len,pt) =
min([
for(i=[0:len(pathseg_unit)-1]) let(
v = pt-path[i],
projection = v*pathseg_unit[i],
segdist = projection < 0? norm(pt-path[i]) :
projection > pathseg_len[i]? norm(pt-select(path,i+1)) :
norm(v-projection*pathseg_unit[i])
) segdist
]);
// Function: offset()
// Synopsis: Takes a 2D path, polygon or region and returns a path offset by an amount.
// SynTags: Path, Region, Ext
// Topics: Paths, Polygons, Regions
// Usage:
// offsetpath = offset(path, [r=|delta=], [chamfer=], [closed=], [check_valid=], [quality=], [same_length=])
// path_faces = offset(path, return_faces=true, [r=|delta=], [chamfer=], [closed=], [check_valid=], [quality=], [firstface_index=], [flip_faces=])
// Description:
// Takes a 2D input path, polygon or region and returns a path offset by the specified amount. As with the built-in
// offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with
// corners. If you used `delta` you can set `chamfer` to true to get chamfers.
// When `closed=true` (the default), the input is treated as a polygon. If the input is a region it is treated as a collection
// of polygons. In this case, positive offset values make the shape larger. If you set `closed=false` then the input is treated as a path
// with distinct start and end points. For paths, positive offsets shifts the path to the left, relative to the direction of the path.
// Note that a path that happens to end at its starting point is not the same as a polygon and the offset result may differ and the ends.
// .
// If you use `delta` without chamfers, the path must not include any 180 degree turns, where the path
// reverses direction. Such reversals result in an offset with two parallel segments, so they cannot be
// extended to an intersection point. If you select chamfering the reversals are permitted and will result
// in a single segment connecting the parallel segments. With rounding, a semi-circle will connect the two offset segments.
// Note also that repeated points are always illegal in the input; remove them first with {{deduplicate()}}.
// .
// When offsets shrink the path, segments cross and become invalid. By default `offset()` checks
// for this situation. To test validity the code checks that segments have distance larger than (r
// or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate
// segments you wanted included in various situations, so you can disable it if you wish by setting
// check_valid=false. When segments are mistakenly removed, you may get the wrong offset output, or you may
// get an error, depending on the effect of removing the segment.
// The erroneous removal of segments is more common when your input
// contains very small segments and in this case can result in an invalid situation where the remaining
// valid segments are parallel and cannot be connected to form an offset curve. If this happens, you
// will get an error message to this effect. The only solutions are to either remove the small segments with {{deduplicate()}},
// or if your path permits it, to set check_valid to false.
// .
// Another situation that can arise with validity testing is that the test is not sufficiently thorough and some
// segments persist that should be eliminated. In this case, increase `quality` from its default of 1 to a value of 2 or 3.
// This increases the number of samples on the segment that are checked, so it will increase run time. In
// some situations you may be able to decrease run time by setting quality to 0, which causes only
// segment ends to be checked.
// .
// When invalid segments are eliminated, the path length decreases, and multiple points on the input path map to the same point
// on the offset path. If you use chamfering or rounding, then
// the chamfers and roundings can increase the length of the output path. Hence points in the output may be
// difficult to associate with the input. If you want to maintain alignment between the points you
// can use the `same_length` option. This option requires that you use `delta=` with `chamfer=false` to ensure
// that no points are added. with `same_length`, when points collapse to a single point in the offset, the output includes
// that point repeated to preserve the correct length. Generally repeated points will not appear in the offset output
// unless you set `same_length` to true, but in some rare circumstances involving very short segments, it is possible for the
// repeated points to occur in the output, even when `same_length=false`.
// .
// Another way to obtain alignment information is to use the return_faces option, which can
// provide alignment information for all offset parameters: it returns a face list which lists faces between
// the original path and the offset path where the vertices are ordered with the original path
// first, starting at `firstface_index` and the offset path vertices appearing afterwords. The
// direction of the faces can be flipped using `flip_faces`. When you request faces the return
// value is a list: [offset_path, face_list].
// Arguments:
// path = the path to process. A list of 2d points.
// ---
// r = offset radius. Distance to offset. Will round over corners.
// delta = offset distance. Distance to offset with pointed corners.
// chamfer = chamfer corners when you specify `delta`. Default: false
// closed = if true path is treated as a polygon. Default: True.
// check_valid = perform segment validity check. Default: True.
// quality = validity check quality parameter, a small integer. Default: 1.
// same_length = return a path with the same length as the input. Only compatible with `delta=`. Default: false
// return_faces = return face list. Default: False.
// firstface_index = starting index for face list. Default: 0.
// flip_faces = flip face direction. Default: false
// Example(2D,NoAxes): Offset the red star out by 10 units.
// star = star(5, r=100, ir=30);
// stroke(closed=true, star, width=3, color="red");
// stroke(closed=true, width=3, offset(star, delta=10, closed=true));
// Example(2D,NoAxes): Offset the star with chamfering
// star = star(5, r=100, ir=30);
// stroke(closed=true, star, width=3, color="red");
// stroke(closed=true, width=3,
// offset(star, delta=10, chamfer=true, closed=true));
// Example(2D,NoAxes): Offset the star with rounding
// star = star(5, r=100, ir=30);
// stroke(closed=true, star, width=3, color="red");
// stroke(closed=true, width=3,
// offset(star, r=10, closed=true));
// Example(2D,NoAxes): Offset inward
// star = star(7, r=120, ir=50);
// stroke(closed=true, width=3, star, color="red");
// stroke(closed=true, width=3,
// offset(star, delta=-15, closed=true));
// Example(2D,NoAxes): Inward offset with chamfers
// star = star(7, r=120, ir=50);
// stroke(closed=true, width=3, star, color="red");
// stroke(closed=true, width=3,
// offset(star, delta=-15, chamfer=true, closed=true));
// Example(2D,NoAxes): Inward offset with rounding
// star = star(7, r=120, ir=50);
// stroke(closed=true, width=3, star, color="red");
// stroke(closed=true, width=3,
// offset(star, r=-15, closed=true, $fn=20));
// Example(2D): Open path. The red path moves from left to right as shown by the arrow and the positive offset shifts to the left of the initial red path.
// sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]];
// stroke(sinpath, width=2, color="red", endcap2="arrow2");
// stroke(offset(sinpath, r=17.5,closed=false),width=2);
// Example(2D,NoAxes): An open path in red with with its positive offset in yellow and its negative offset in blue.
// seg = [[0,0],[0,50]];
// stroke(seg,color="red",endcap2="arrow2");
// stroke(offset(seg,r=15,closed=false));
// stroke(offset(seg,r=-15,closed=false),color="blue");
// Example(2D,NoAxes): Offsetting the same line segment closed=true. On the left, we use delta with chamfer=false, in the middle, chamfer=true, and on the right, rounding with r=. A "closed" path here means that the path backtracks over itself. When this happens, a flat end occurs in the first case, an end with chamfered corners if chamfering is on, or a semicircular rounding in the rounded case.
// seg = [[0,0],[0,50]];
// stroke(seg,color="red");
// stroke([offset(seg,delta=15,closed=true)]);
// right(45){
// stroke(seg,color="red");
// stroke([offset(seg,delta=15,chamfer=true,closed=true)]);
// }
// right(90){
// stroke(seg,color="red");
// stroke([offset(seg,r=15,closed=true)]);
// }
// Example(2D,NoAxes): Cutting a notch out of a square with a path reversal
// path = [[-10,-10],[-10,10],[0,10],[0,0],[0,10],[10,10],[10,-10]];
// stroke([path],width=.25,color="red");
// stroke([offset(path, r=-2,$fn=32,closed=true)],width=.25);
// Example(2D,NoAxes): A more complex example where the path turns back on itself several times.
// $fn=32;
// path = [
// [0,0], [5,5],
// [10,0],[5,5],
// [11,8],[5,5],
// [5,10],[5,5],
// [-1,4],[5,5]
// ];
// op=offset(path, r=1.5,closed=true);
// stroke([path],width=.1,color="red");
// stroke([op],width=.1);
// Example(2D,NoAxes): With the default quality value, this case produces the wrong answer. This happens because the offset edge corresponding to the long left edge (shown in green) is erroneously flagged as invalid. If you use `r=` instead of `delta=` then this will fail with an error.
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
// polygon(offset(test,delta=-1.9, closed=true));
// stroke([test],width=.1,color="red");
// stroke(select(test,-2,-1), width=.1, color="green");
// Example(2D,NoAxes): Using `quality=2` produces the correct result
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
// polygon(offset(test,r=-1.9, closed=true, quality=2));
// stroke([test],width=.1,color="red");
// Example(2D,NoAxes): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve so they all get flagged as invalid and deleted from the output.
// star = star(5, r=22, ir=13);
// stroke(star,width=.3,closed=true);
// color("green")
// stroke(offset(star, delta=-9, closed=true),width=.3,closed=true); // Works with check_valid=true (the default)
// color("red")
// stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true
// width=.3,closed=true);
// Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks.
// star = star(5, r=22, ir=13);
// color("green")
// stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true);
// color("red")
// stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true);
// Example(2D,NoAxes): The extra triangles in this example show that the validity check cannot be skipped
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true),
// width=0.3, closed=true);
// Example(2D,NoAxes): The triangles are removed by the validity check
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true),
// width=0.3, closed=true);
// Example(2D,NoAxes): The region shown in red has the yellow offset region.
// rgn = difference(circle(d=100),
// union(square([20,40], center=true),
// square([40,20], center=true)));
// stroke(rgn, width=1, color="red");
// region(offset(rgn, r=-5));
// Example(2D,NoAxes): Using `same_length=true` to align the original curve to the offset. Note that lots of points map to the corner at the top.
// closed=false;
// path = [for(angle=[0:5:180]) 10*[angle/100,2*sin(angle)]];
// opath = offset(path, delta=-3,same_length=true,closed=closed);
// stroke(path,closed=closed,width=.3);
// stroke(opath,closed=closed,width=.3);
// color("red") for(i=idx(path)) stroke([path[i],opath[i]],width=.3);
function offset(
path, r=undef, delta=undef, chamfer=false,
closed=true, check_valid=true,
quality=1, return_faces=false, firstface_index=0,
flip_faces=false, same_length=false
) =
assert(!(same_length && return_faces), "Cannot combine return_faces with same_length")
is_region(path)?
assert(closed, "cannot set closed=false for a region")
assert(!return_faces, "return_faces not supported for regions.")
let(
ofsregs = [for(R=region_parts(path))
difference([for(i=idx(R)) offset(R[i], r=u_mul(i>0?-1:1,r), delta=u_mul(i>0?-1:1,delta),