You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The error comes from here:
if jaccard_similarity(train_json[index]["pre_skeleton"], target["pre_skeleton"]) < self.threshold:
the details as below:
File "/home/jiangshan/code/DAIL-SQL/prompt/ExampleSelectorTemplate.py", line 353, in get_examples
if jaccard_similarity(train_json[index]["pre_skeleton"], target["pre_skeleton"]) < self.threshold:
File "/home/jiangshan/code/DAIL-SQL/prompt/PromptICLTemplate.py", line 51, in format
examples = self.get_examples(target, self.NUM_EXAMPLE * scope_factor, cross_domain=cross_domain)
File "/home/jiangshan/code/DAIL-SQL/generate_question.py", line 87, in
question_format = prompt.format(target=question_json,
KeyError: 'pre_skeleton'
Hi, I apologize for any inconvenience caused. For clarity, kindly refer to the run_daily_sql_mini.sh script. If you use EUCDISMASKPRESKLSIMTHR as your --selector_type, remember to also provide the path to your SQL file that was predicted beforehand. Put this path in --pre_test_result. This tells the script exactly where to find your initial SQL predictions.
In the DAIL-SQL paper it is stated that Graphix is used as the model to produce pre-predictions. In the run_dail_sql_mini.sh script the pre test result is set as ./results/DAIL-SQL+GPT-4.txt
Should this not be set to graphix_result.txt? And is the code available that generates these graphix predictions? Thank you.
Hi, sorry for missing this reply. We will not publish the code for graphix here, as we are not the authors of graphix. Please refer to the paper for graphix.
The error comes from here:
if jaccard_similarity(train_json[index]["pre_skeleton"], target["pre_skeleton"]) < self.threshold:
the details as below:
File "/home/jiangshan/code/DAIL-SQL/prompt/ExampleSelectorTemplate.py", line 353, in get_examples
if jaccard_similarity(train_json[index]["pre_skeleton"], target["pre_skeleton"]) < self.threshold:
File "/home/jiangshan/code/DAIL-SQL/prompt/PromptICLTemplate.py", line 51, in format
examples = self.get_examples(target, self.NUM_EXAMPLE * scope_factor, cross_domain=cross_domain)
File "/home/jiangshan/code/DAIL-SQL/generate_question.py", line 87, in
question_format = prompt.format(target=question_json,
KeyError: 'pre_skeleton'
index = 2039
train_json[index]:
{'db_id': 'party_people', 'query': 'SELECT count() FROM region', 'query_toks': ['SELECT', 'count', '(', '', ')', 'FROM', 'region'], 'query_toks_no_value': ['select', 'count', '(', '*', ')', 'from', 'region'], 'question': 'How many regions do we have?', 'question_toks': ['How', 'many', 'regions', 'do', 'we', 'have', '?'], 'sql': {'from': {...}, 'select': [...], 'where': [...], 'groupBy': [...], 'having': [...], 'orderBy': [...], 'limit': None, 'intersect': None, 'union': None, 'except': None}, 'tables': [{...}, {...}, {...}, {...}], 'query_skeleton': 'select count ( _ ) from _', 'path_db': '/home/jiangshan/data/datasets/llm/spider/database/party_people/party_people.sqlite', 'sc_link': {'q_col_match': {...}, 'q_tab_match': {...}}, 'cv_link': {'num_date_match': {}, 'cell_match': {}}, 'question_for_copying': ['how', 'many', 'regions', 'do', 'we', 'have', '?'], 'column_to_table': {'0': None, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 1, '8': 1, '9': 1, '10': 1, '11': 1, '12': 1, '13': 2, '14': 2, '15': 2, '16': 2, '17': 3, '18': 3, ...}, 'table_names_original': ['region', 'party', 'member', 'party_events'], 'question_pattern': 'how many _ do we have ?', 'pre_skeleton': 'select count ( _ ) from _'}
The target is :
{'db_id': 'concert_singer', 'query': 'SELECT count() FROM singer', 'query_toks': ['SELECT', 'count', '(', '', ')', 'FROM', 'singer'], 'query_toks_no_value': ['select', 'count', '(', '*', ')', 'from', 'singer'], 'question': 'How many singers do we have?', 'question_toks': ['How', 'many', 'singers', 'do', 'we', 'have', '?'], 'sql': {'from': {...}, 'select': [...], 'where': [...], 'groupBy': [...], 'having': [...], 'orderBy': [...], 'limit': None, 'intersect': None, 'union': None, 'except': None}, 'tables': [{...}, {...}, {...}, {...}], 'query_skeleton': 'select count ( _ ) from _', 'path_db': '/home/jiangshan/data/datasets/llm/spider/database/concert_singer/concert_singer.sqlite', 'sc_link': {'q_col_match': {...}, 'q_tab_match': {...}}, 'cv_link': {'num_date_match': {}, 'cell_match': {}}, 'question_for_copying': ['how', 'many', 'singers', 'do', 'we', 'have', '?'], 'column_to_table': {'0': None, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 0, '8': 1, '9': 1, '10': 1, '11': 1, '12': 1, '13': 1, '14': 1, '15': 2, '16': 2, '17': 2, '18': 2, ...}, 'table_names_original': ['stadium', 'singer', 'concert', 'singer_in_concert'], 'question_pattern': 'how many _ do we have ?'}
The debug args are:
"args": [
"--data_type", "spider",
"--split", "test",
"--tokenizer", "/home/schinta/data/model/llm/pre_train/THUDM/chatglm3-6b",
"--max_seq_len", "4096",
"--selector_type", "EUCDISMASKPRESKLSIMTHR",
"--prompt_repr", "SQL",
"--k_shot", "9",
"--example_type", "QA"
]
The pip list show as below:
Package Version
accelerate 0.28.0
aiofiles 23.2.1
aiohttp 3.8.4
aiosignal 1.3.1
altair 5.2.0
annotated-types 0.6.0
annoy 1.17.1
anyio 3.7.0
async-timeout 4.0.2
attrs 23.1.0
bpemb 0.3.5
certifi 2024.2.2
charset-normalizer 3.1.0
click 8.1.7
cmake 3.26.3
contourpy 1.1.1
corenlp-protobuf 3.8.0
cpm-kernels 1.0.11
cycler 0.12.1
dataclasses-json 0.5.7
distro 1.9.0
exceptiongroup 1.1.1
ffmpy 0.3.2
filelock 3.12.0
fonttools 4.50.0
frozenlist 1.3.3
fsspec 2023.5.0
gensim 4.3.2
greenlet 2.0.2
h11 0.14.0
httpcore 1.0.4
httpx 0.27.0
huggingface-hub 0.23.0
idna 3.7
importlib_resources 6.4.0
Jinja2 3.1.2
joblib 1.2.0
jsonschema 4.21.1
jsonschema-specifications 2023.12.1
kiwisolver 1.4.5
latex2mathml 3.77.0
lit 16.0.6
Markdown 3.6
markdown-it-py 3.0.0
MarkupSafe 2.1.2
marshmallow 3.19.0
marshmallow-enum 1.5.1
matplotlib 3.7.5
mdtex2html 1.3.0
mdurl 0.1.2
mpmath 1.3.0
multidict 6.0.4
mypy-extensions 1.0.0
nemoguardrails 0.3.0
networkx 3.1
nltk 3.8.1
numexpr 2.8.4
numpy 1.24.4
nvidia-cublas-cu11 11.10.3.66
nvidia-cublas-cu12 12.1.3.1
nvidia-cuda-cupti-cu11 11.7.101
nvidia-cuda-cupti-cu12 12.1.105
nvidia-cuda-nvrtc-cu11 11.7.99
nvidia-cuda-nvrtc-cu12 12.1.105
nvidia-cuda-runtime-cu11 11.7.99
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu11 8.5.0.96
nvidia-cudnn-cu12 8.9.2.26
nvidia-cufft-cu11 10.9.0.58
nvidia-cufft-cu12 11.0.2.54
nvidia-curand-cu11 10.2.10.91
nvidia-curand-cu12 10.3.2.106
nvidia-cusolver-cu11 11.4.0.1
nvidia-cusolver-cu12 11.4.5.107
nvidia-cusparse-cu11 11.7.4.91
nvidia-cusparse-cu12 12.1.0.106
nvidia-nccl-cu11 2.14.3
nvidia-nccl-cu12 2.20.5
nvidia-nvjitlink-cu12 12.4.127
nvidia-nvtx-cu11 11.7.91
nvidia-nvtx-cu12 12.1.105
openai 1.30.1
openapi-schema-pydantic 1.2.4
orjson 3.9.15
packaging 24.0
pandas 2.0.3
pillow 10.2.0
pip 24.0
pkgutil_resolve_name 1.3.10
protobuf 3.20.3
psutil 5.9.8
pydantic 2.7.1
pydantic_core 2.18.2
pydub 0.25.1
Pygments 2.17.2
pyparsing 3.1.2
python-multipart 0.0.9
pytz 2024.1
PyYAML 6.0
referencing 0.34.0
regex 2023.5.5
requests 2.31.0
rfc3986 1.5.0
rich 13.7.1
rpds-py 0.18.0
ruff 0.3.4
safetensors 0.3.1
scikit-learn 1.2.2
scipy 1.10.1
semantic-version 2.10.0
sentence-transformers 2.2.2
sentencepiece 0.1.99
setuptools 65.5.1
shellingham 1.5.4
simpleeval 0.9.13
six 1.16.0
smart-open 7.0.4
sniffio 1.3.0
sql_metadata 2.11.0
SQLAlchemy 2.0.17
sqlparse 0.5.0
stanford-corenlp 3.9.2
sympy 1.12
threadpoolctl 3.1.0
tokenizers 0.13.3
tomlkit 0.12.0
toolz 0.12.1
torch 2.3.0
torchtext 0.18.0
torchvision 0.18.0
tqdm 4.65.0
transformers 4.27.1
triton 2.3.0
typer 0.10.0
typing_extensions 4.11.0
typing-inspect 0.9.0
tzdata 2024.1
urllib3 2.2.1
uvicorn 0.22.0
websockets 11.0.3
wheel 0.43.0
wrapt 1.16.0
yarl 1.9.2
zipp 3.18.1
The text was updated successfully, but these errors were encountered: