-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathagent.py
352 lines (296 loc) · 16.7 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import torch
import numpy as np
import torch.optim as optim
from torch.nn.utils import clip_grad_norm_
import torch.nn.functional as F
import random
import math
from ReplayBuffers import ReplayBuffer, PrioritizedReplay
from model import IQN
class IQN_Agent():
"""Interacts with and learns from the environment."""
def __init__(self,
state_size,
action_size,
network,
munchausen,
layer_size,
n_step,
BATCH_SIZE,
BUFFER_SIZE,
LR,
TAU,
GAMMA,
N,
worker,
device,
seed):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
layer_size (int): size of the hidden layer
BATCH_SIZE (int): size of the training batch
BUFFER_SIZE (int): size of the replay memory
LR (float): learning rate
TAU (float): tau for soft updating the network weights
GAMMA (float): discount factor
UPDATE_EVERY (int): update frequency
device (str): device that is used for the compute
seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.network = network
self.munchausen = munchausen
self.seed = random.seed(seed)
self.seed_t = torch.manual_seed(seed)
self.device = device
self.TAU = TAU
self.N = N
self.K = 32
self.entropy_tau = 0.03
self.lo = -1
self.alpha = 0.9
self.GAMMA = GAMMA
self.BATCH_SIZE = BATCH_SIZE * worker
self.Q_updates = 0
self.n_step = n_step
self.worker = worker
self.UPDATE_EVERY = worker
self.last_action = None
if "noisy" in self.network:
noisy = True
else:
noisy = False
if "duel" in self.network:
duel = True
else:
duel = False
# IQN-Network
self.qnetwork_local = IQN(state_size, action_size,layer_size, n_step, seed, N, dueling=duel, noisy=noisy, device=device).to(device)
self.qnetwork_target = IQN(state_size, action_size,layer_size, n_step, seed,N, dueling=duel, noisy=noisy, device=device).to(device)
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)
print(self.qnetwork_local)
# Replay memory
if "per" in self.network:
self.per = 1
self.memory = PrioritizedReplay(BUFFER_SIZE, self.BATCH_SIZE, seed=seed, gamma=self.GAMMA, n_step=n_step, parallel_env=worker)
else:
self.per = 0
self.memory = ReplayBuffer(BUFFER_SIZE, self.BATCH_SIZE, self.device, seed, self.GAMMA, n_step, worker)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
def step(self, state, action, reward, next_state, done, writer):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % self.UPDATE_EVERY
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > self.BATCH_SIZE:
experiences = self.memory.sample()
if not self.per:
loss = self.learn(experiences)
else:
loss = self.learn_per(experiences)
self.Q_updates += 1
writer.add_scalar("Q_loss", loss, self.Q_updates)
def act(self, state, eps=0., eval=False):
"""Returns actions for given state as per current policy. Acting only every 4 frames!
Params
======
frame: to adjust epsilon
state (array_like): current state
"""
# Epsilon-greedy action selection
if random.random() > eps: # select greedy action if random number is higher than epsilon or noisy network is used!
state = np.array(state)
if len(self.state_size) > 1:
state = torch.from_numpy(state).float().to(self.device)#.expand(self.K, self.state_size[0], self.state_size[1],self.state_size[2])
else:
state = torch.from_numpy(state).float().to(self.device)#.expand(self.K, self.state_size[0])
self.qnetwork_local.eval()
with torch.no_grad():
action_values = self.qnetwork_local.get_qvalues(state)#.mean(0)
self.qnetwork_local.train()
action = np.argmax(action_values.cpu().data.numpy(), axis=1)
return action
else:
if eval:
action = random.choices(np.arange(self.action_size), k=1)
else:
action = random.choices(np.arange(self.action_size), k=self.worker)
return action
def learn(self, experiences):
"""Update value parameters using given batch of experience tuples.
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
self.optimizer.zero_grad()
if not self.munchausen:
states, actions, rewards, next_states, dones = experiences
# Get max predicted Q values (for next states) from target model
Q_targets_next, _ = self.qnetwork_target(next_states, self.N)
Q_targets_next = Q_targets_next.detach().cpu()
action_indx = torch.argmax(Q_targets_next.mean(dim=1), dim=1, keepdim=True)
Q_targets_next = Q_targets_next.gather(2, action_indx.unsqueeze(-1).expand(self.BATCH_SIZE, self.N, 1)).transpose(1,2)
# Compute Q targets for current states
Q_targets = rewards.unsqueeze(-1) + (self.GAMMA**self.n_step * Q_targets_next.to(self.device) * (1. - dones.unsqueeze(-1)))
# Get expected Q values from local model
Q_expected, taus = self.qnetwork_local(states, self.N)
Q_expected = Q_expected.gather(2, actions.unsqueeze(-1).expand(self.BATCH_SIZE, self.N, 1))
# Quantile Huber loss
td_error = Q_targets - Q_expected
assert td_error.shape == (self.BATCH_SIZE, self.N, self.N), "wrong td error shape"
huber_l = calculate_huber_loss(td_error, 1.0)
quantil_l = abs(taus -(td_error.detach() < 0).float()) * huber_l / 1.0
loss = quantil_l.sum(dim=1).mean(dim=1) # , keepdim=True if per weights get multipl
loss = loss.mean()
else:
states, actions, rewards, next_states, dones = experiences
Q_targets_next, _ = self.qnetwork_target(next_states, self.N)
Q_targets_next = Q_targets_next.detach() #(batch, num_tau, actions)
q_t_n = Q_targets_next.mean(dim=1)
# calculate log-pi
logsum = torch.logsumexp(\
(q_t_n - q_t_n.max(1)[0].unsqueeze(-1))/self.entropy_tau, 1).unsqueeze(-1) #logsum trick
assert logsum.shape == (self.BATCH_SIZE, 1), "log pi next has wrong shape: {}".format(logsum.shape)
tau_log_pi_next = (q_t_n - q_t_n.max(1)[0].unsqueeze(-1) - self.entropy_tau*logsum).unsqueeze(1)
pi_target = F.softmax(q_t_n/self.entropy_tau, dim=1).unsqueeze(1)
Q_target = (self.GAMMA**self.n_step * (pi_target * (Q_targets_next-tau_log_pi_next)*(1 - dones.unsqueeze(-1))).sum(2)).unsqueeze(1)
assert Q_target.shape == (self.BATCH_SIZE, 1, self.N)
q_k_target = self.qnetwork_target.get_qvalues(states).detach()
v_k_target = q_k_target.max(1)[0].unsqueeze(-1)
tau_log_pik = q_k_target - v_k_target - self.entropy_tau*torch.logsumexp(\
(q_k_target - v_k_target)/self.entropy_tau, 1).unsqueeze(-1)
assert tau_log_pik.shape == (self.BATCH_SIZE, self.action_size), "shape instead is {}".format(tau_log_pik.shape)
munchausen_addon = tau_log_pik.gather(1, actions)
# calc munchausen reward:
munchausen_reward = (rewards + self.alpha*torch.clamp(munchausen_addon, min=self.lo, max=0)).unsqueeze(-1)
assert munchausen_reward.shape == (self.BATCH_SIZE, 1, 1)
# Compute Q targets for current states
Q_targets = munchausen_reward + Q_target
# Get expected Q values from local model
q_k, taus = self.qnetwork_local(states, self.N)
Q_expected = q_k.gather(2, actions.unsqueeze(-1).expand(self.BATCH_SIZE, self.N, 1))
assert Q_expected.shape == (self.BATCH_SIZE, self.N, 1)
# Quantile Huber loss
td_error = Q_targets - Q_expected
assert td_error.shape == (self.BATCH_SIZE, self.N, self.N), "wrong td error shape"
huber_l = calculate_huber_loss(td_error, 1.0)
quantil_l = abs(taus -(td_error.detach() < 0).float()) * huber_l / 1.0
loss = quantil_l.sum(dim=1).mean(dim=1) # , keepdim=True if per weights get multipl
loss = loss.mean()
# Minimize the loss
loss.backward()
clip_grad_norm_(self.qnetwork_local.parameters(),1)
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.qnetwork_local, self.qnetwork_target)
return loss.detach().cpu().numpy()
def learn_per(self, experiences):
"""Update value parameters using given batch of experience tuples.
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
self.optimizer.zero_grad()
if not self.munchausen:
states, actions, rewards, next_states, dones, idx, weights = experiences
states = torch.FloatTensor(states).to(self.device)
next_states = torch.FloatTensor(np.float32(next_states)).to(self.device)
actions = torch.LongTensor(actions).to(self.device).unsqueeze(1)
rewards = torch.FloatTensor(rewards).to(self.device).unsqueeze(1)
dones = torch.FloatTensor(dones).to(self.device).unsqueeze(1)
weights = torch.FloatTensor(weights).unsqueeze(1).to(self.device)
# Get max predicted Q values (for next states) from target model
Q_targets_next, _ = self.qnetwork_target(next_states, self.N)
Q_targets_next = Q_targets_next.detach().cpu()
action_indx = torch.argmax(Q_targets_next.mean(dim=1), dim=1, keepdim=True)
Q_targets_next = Q_targets_next.gather(2, action_indx.unsqueeze(-1).expand(self.BATCH_SIZE, self.N, 1)).transpose(1,2)
# Compute Q targets for current states
Q_targets = rewards.unsqueeze(-1) + (self.GAMMA**self.n_step * Q_targets_next.to(self.device) * (1. - dones.unsqueeze(-1)))
# Get expected Q values from local model
Q_expected, taus = self.qnetwork_local(states, self.N)
Q_expected = Q_expected.gather(2, actions.unsqueeze(-1).expand(self.BATCH_SIZE, self.N, 1))
# Quantile Huber loss
td_error = Q_targets - Q_expected
assert td_error.shape == (self.BATCH_SIZE, self.N, self.N), "wrong td error shape"
huber_l = calculate_huber_loss(td_error, 1.0)
quantil_l = abs(taus -(td_error.detach() < 0).float()) * huber_l / 1.0
loss = quantil_l.sum(dim=1).mean(dim=1, keepdim=True)* weights # , keepdim=True if per weights get multipl
loss = loss.mean()
else:
states, actions, rewards, next_states, dones, idx, weights = experiences
states = torch.FloatTensor(states).to(self.device)
next_states = torch.FloatTensor(np.float32(next_states)).to(self.device)
actions = torch.LongTensor(actions).to(self.device).unsqueeze(1)
rewards = torch.FloatTensor(rewards).to(self.device).unsqueeze(1)
dones = torch.FloatTensor(dones).to(self.device).unsqueeze(1)
weights = torch.FloatTensor(weights).unsqueeze(1).to(self.device)
Q_targets_next, _ = self.qnetwork_target(next_states, self.N)
Q_targets_next = Q_targets_next.detach() #(batch, num_tau, actions)
q_t_n = Q_targets_next.mean(dim=1)
# calculate log-pi
logsum = torch.logsumexp(\
(Q_targets_next - Q_targets_next.max(2)[0].unsqueeze(-1))/self.entropy_tau, 2).unsqueeze(-1) #logsum trick
assert logsum.shape == (self.BATCH_SIZE, self.N, 1), "log pi next has wrong shape"
tau_log_pi_next = Q_targets_next - Q_targets_next.max(2)[0].unsqueeze(-1) - self.entropy_tau*logsum
pi_target = F.softmax(q_t_n/self.entropy_tau, dim=1).unsqueeze(1)
Q_target = (self.GAMMA**self.n_step * (pi_target * (Q_targets_next-tau_log_pi_next)*(1 - dones.unsqueeze(-1))).sum(2)).unsqueeze(1)
assert Q_target.shape == (self.BATCH_SIZE, 1, self.N)
q_k_target = self.qnetwork_target.get_qvalues(states).detach()
v_k_target = q_k_target.max(1)[0].unsqueeze(-1) # (8,8,1)
tau_log_pik = q_k_target - v_k_target - self.entropy_tau*torch.logsumexp(\
(q_k_target - v_k_target)/self.entropy_tau, 1).unsqueeze(-1)
assert tau_log_pik.shape == (self.BATCH_SIZE, self.action_size), "shape instead is {}".format(tau_log_pik.shape)
munchausen_addon = tau_log_pik.gather(1, actions) #.unsqueeze(-1).expand(self.BATCH_SIZE, self.N, 1)
# calc munchausen reward:
munchausen_reward = (rewards + self.alpha*torch.clamp(munchausen_addon, min=self.lo, max=0)).unsqueeze(-1)
assert munchausen_reward.shape == (self.BATCH_SIZE, 1, 1)
# Compute Q targets for current states
Q_targets = munchausen_reward + Q_target
# Get expected Q values from local model
q_k, taus = self.qnetwork_local(states, self.N)
Q_expected = q_k.gather(2, actions.unsqueeze(-1).expand(self.BATCH_SIZE, self.N, 1))
assert Q_expected.shape == (self.BATCH_SIZE, self.N, 1)
# Quantile Huber loss
td_error = Q_targets - Q_expected
assert td_error.shape == (self.BATCH_SIZE, self.N, self.N), "wrong td error shape"
huber_l = calculate_huber_loss(td_error, 1.0)
quantil_l = abs(taus -(td_error.detach() < 0).float()) * huber_l / 1.0
loss = quantil_l.sum(dim=1).mean(dim=1, keepdim=True)* weights # , keepdim=True if per weights get multipl
loss = loss.mean()
# Minimize the loss
loss.backward()
clip_grad_norm_(self.qnetwork_local.parameters(),1)
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.qnetwork_local, self.qnetwork_target)
# update priorities
td_error = td_error.sum(dim=1).mean(dim=1,keepdim=True) # not sure about this -> test
self.memory.update_priorities(idx, abs(td_error.data.cpu().numpy()))
return loss.detach().cpu().numpy()
def soft_update(self, local_model, target_model):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(self.TAU*local_param.data + (1.0-self.TAU)*target_param.data)
def calculate_huber_loss(td_errors, k=1.0):
"""
Calculate huber loss element-wisely depending on kappa k.
"""
loss = torch.where(td_errors.abs() <= k, 0.5 * td_errors.pow(2), k * (td_errors.abs() - 0.5 * k))
#assert loss.shape == (td_errors.shape[0], 8, 8), "huber loss has wrong shape"
return loss