We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我们从导数出发,介绍了微分的概念,它是我们从函数的宏观趋势,把握每一个点细节变化的工具。然后我们介绍了多变量函数的微分,也就是梯度的概念,并且说明了如何在有大量不确定性,或者说大量的变量中找到前进方向的方法,具体讲就是往坡度最高的方向努力。
因此,微积分给我们的第一个思维提升就是练习从宏观趋势中把握微观变化的趋势,让我们认清每一步的方向。
The text was updated successfully, but these errors were encountered:
No branches or pull requests
我们从导数出发,介绍了微分的概念,它是我们从函数的宏观趋势,把握每一个点细节变化的工具。然后我们介绍了多变量函数的微分,也就是梯度的概念,并且说明了如何在有大量不确定性,或者说大量的变量中找到前进方向的方法,具体讲就是往坡度最高的方向努力。
因此,微积分给我们的第一个思维提升就是练习从宏观趋势中把握微观变化的趋势,让我们认清每一步的方向。
The text was updated successfully, but these errors were encountered: