forked from colligant/gravity-wave-gui-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit_ellipse.m
268 lines (247 loc) · 9.7 KB
/
fit_ellipse.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
function [ellipse_t,p1] = fit_ellipse( x,y,axis_handle )
%
% fit_ellipse - finds the best fit to an ellipse for the given set of points.
%
% Format: ellipse_t = fit_ellipse( x,y,axis_handle )
%
% Input: x,y - a set of points in 2 column vectors. AT LEAST 5 points are needed !
% axis_handle - optional. a handle to an axis, at which the estimated ellipse
% will be drawn along with it's axes
%
% Output: ellipse_t - structure that defines the best fit to an ellipse
% a - sub axis (radius) of the X axis of the non-tilt ellipse
% b - sub axis (radius) of the Y axis of the non-tilt ellipse
% phi - orientation in radians of the ellipse (tilt)
% X0 - center at the X axis of the non-tilt ellipse
% Y0 - center at the Y axis of the non-tilt ellipse
% X0_in - center at the X axis of the tilted ellipse
% Y0_in - center at the Y axis of the tilted ellipse
% long_axis - size of the long axis of the ellipse
% short_axis - size of the short axis of the ellipse
% status - status of detection of an ellipse
%
% Note: if an ellipse was not detected (but a parabola or hyperbola), then
% an empty structure is returned
% =====================================================================================
% Ellipse Fit using Least Squares criterion
% =====================================================================================
% We will try to fit the best ellipse to the given measurements. the mathematical
% representation of use will be the CONIC Equation of the Ellipse which is:
%
% Ellipse = a*x^2 + b*x*y + c*y^2 + d*x + e*y + f = 0
%
% The fit-estimation method of use is the Least Squares method (without any weights)
% The estimator is extracted from the following equations:
%
% g(x,y;A) := a*x^2 + b*x*y + c*y^2 + d*x + e*y = f
%
% where:
% A - is the vector of parameters to be estimated (a,b,c,d,e)
% x,y - is a single measurement
%
% We will define the cost function to be:
%
% Cost(A) := (g_c(x_c,y_c;A)-f_c)'*(g_c(x_c,y_c;A)-f_c)
% = (X*A+f_c)'*(X*A+f_c)
% = A'*X'*X*A + 2*f_c'*X*A + N*f^2
%
% where:
% g_c(x_c,y_c;A) - vector function of ALL the measurements
% each element of g_c() is g(x,y;A)
% X - a matrix of the form: [x_c.^2, x_c.*y_c, y_c.^2, x_c, y_c ]
% f_c - is actually defined as ones(length(f),1)*f
%
% Derivation of the Cost function with respect to the vector of parameters "A" yields:
%
% A'*X'*X = -f_c'*X = -f*ones(1,length(f_c))*X = -f*sum(X)
%
% Which yields the estimator:
%
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% | A_least_squares = -f*sum(X)/(X'*X) ->(normalize by -f) = sum(X)/(X'*X) |
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%
% (We will normalize the variables by (-f) since "f" is unknown and can be accounted for later on)
%
% NOW, all that is left to do is to extract the parameters from the Conic Equation.
% We will deal the vector A into the variables: (A,B,C,D,E) and assume F = -1;
%
% Recall the conic representation of an ellipse:
%
% A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0
%
% We will check if the ellipse has a tilt (=orientation). The orientation is present
% if the coefficient of the term "x*y" is not zero. If so, we first need to remove the
% tilt of the ellipse.
%
% If the parameter "B" is not equal to zero, then we have an orientation (tilt) to the ellipse.
% we will remove the tilt of the ellipse so as to remain with a conic representation of an
% ellipse without a tilt, for which the math is more simple:
%
% Non tilt conic rep.: A`*x^2 + C`*y^2 + D`*x + E`*y + F` = 0
%
% We will remove the orientation using the following substitution:
%
% Replace x with cx+sy and y with -sx+cy such that the conic representation is:
%
% A(cx+sy)^2 + B(cx+sy)(-sx+cy) + C(-sx+cy)^2 + D(cx+sy) + E(-sx+cy) + F = 0
%
% where: c = cos(phi) , s = sin(phi)
%
% and simplify...
%
% x^2(A*c^2 - Bcs + Cs^2) + xy(2A*cs +(c^2-s^2)B -2Ccs) + ...
% y^2(As^2 + Bcs + Cc^2) + x(Dc-Es) + y(Ds+Ec) + F = 0
%
% The orientation is easily found by the condition of (B_new=0) which results in:
%
% 2A*cs +(c^2-s^2)B -2Ccs = 0 ==> phi = 1/2 * atan( b/(c-a) )
%
% Now the constants c=cos(phi) and s=sin(phi) can be found, and from them
% all the other constants A`,C`,D`,E` can be found.
%
% A` = A*c^2 - B*c*s + C*s^2 D` = D*c-E*s
% B` = 2*A*c*s +(c^2-s^2)*B -2*C*c*s = 0 E` = D*s+E*c
% C` = A*s^2 + B*c*s + C*c^2
%
% Next, we want the representation of the non-tilted ellipse to be as:
%
% Ellipse = ( (X-X0)/a )^2 + ( (Y-Y0)/b )^2 = 1
%
% where: (X0,Y0) is the center of the ellipse
% a,b are the ellipse "radiuses" (or sub-axis)
%
% Using a square completion method we will define:
%
% F`` = -F` + (D`^2)/(4*A`) + (E`^2)/(4*C`)
%
% Such that: a`*(X-X0)^2 = A`(X^2 + X*D`/A` + (D`/(2*A`))^2 )
% c`*(Y-Y0)^2 = C`(Y^2 + Y*E`/C` + (E`/(2*C`))^2 )
%
% which yields the transformations:
%
% X0 = -D`/(2*A`)
% Y0 = -E`/(2*C`)
% a = sqrt( abs( F``/A` ) )
% b = sqrt( abs( F``/C` ) )
%
% And finally we can define the remaining parameters:
%
% long_axis = 2 * max( a,b )
% short_axis = 2 * min( a,b )
% Orientation = phi
%
%
% initialize
orientation_tolerance = 1e-3;
% empty warning stack
warning( '' );
% prepare vectors, must be column vectors
x = x(:);
y = y(:);
% remove bias of the ellipse - to make matrix inversion more accurate. (will be added later on).
mean_x = mean(x);
mean_y = mean(y);
x = x-mean_x;
y = y-mean_y;
% the estimation for the conic equation of the ellipse
X = [x.^2, x.*y, y.^2, x, y ];
a = sum(X)/(X'*X);
% check for warnings
if ~isempty( lastwarn )
disp( 'stopped because of a warning regarding matrix inversion' );
ellipse_t = [];
return
end
% extract parameters from the conic equation
[a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) );
% remove the orientation from the ellipse
if ( min(abs(b/a),abs(b/c)) > orientation_tolerance )
orientation_rad = 1/2 * atan2( b, (c-a) );
cos_phi = cos( orientation_rad );
sin_phi = sin( orientation_rad );
[a,b,c,d,e] = deal(...
a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,...
0,...
a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,...
d*cos_phi - e*sin_phi,...
d*sin_phi + e*cos_phi );
[mean_x,mean_y] = deal( ...
cos_phi*mean_x - sin_phi*mean_y,...
sin_phi*mean_x + cos_phi*mean_y );
else
orientation_rad = 0;
cos_phi = cos( orientation_rad );
sin_phi = sin( orientation_rad );
end
% check if conic equation represents an ellipse
test = a*c;
switch (1)
case (test>0), status = '';
case (test==0), status = 'Parabola found'; warning( 'fit_ellipse: Did not locate an ellipse' );
case (test<0), status = 'Hyperbola found'; warning( 'fit_ellipse: Did not locate an ellipse' );
end
% if we found an ellipse return it's data
if (test>0)
% make sure coefficients are positive as required
if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end
% final ellipse parameters
X0 = mean_x - d/2/a;
Y0 = mean_y - e/2/c;
F = 1 + (d^2)/(4*a) + (e^2)/(4*c);
[a,b] = deal( sqrt( F/a ),sqrt( F/c ) );
long_axis = 2*max(a,b);
short_axis = 2*min(a,b);
% rotate the axes backwards to find the center point of the original TILTED ellipse
R = [ cos_phi sin_phi; -sin_phi cos_phi ];
P_in = R * [X0;Y0];
X0_in = P_in(1);
Y0_in = P_in(2);
% pack ellipse into a structure
ellipse_t = struct( ...
'a',a,...
'b',b,...
'phi',orientation_rad,...
'X0',X0,...
'Y0',Y0,...
'X0_in',X0_in,...
'Y0_in',Y0_in,...
'long_axis',long_axis,...
'short_axis',short_axis,...
'status','' );
else
% report an empty structure
ellipse_t = struct( ...
'a',[],...
'b',[],...
'phi',[],...
'X0',[],...
'Y0',[],...
'X0_in',[],...
'Y0_in',[],...
'long_axis',[],...
'short_axis',[],...
'status',status );
end
% check if we need to plot an ellipse with it's axes.
if (nargin>2) & ~isempty( axis_handle ) & (test>0)
% rotation matrix to rotate the axes with respect to an angle phi
R = [ cos_phi sin_phi; -sin_phi cos_phi ];
% the axes
ver_line = [ [X0 X0]; Y0+b*[-1 1] ];
horz_line = [ X0+a*[-1 1]; [Y0 Y0] ];
new_ver_line = R*ver_line;
new_horz_line = R*horz_line;
% the ellipse
theta_r = linspace(0,2*pi);
ellipse_x_r = X0 + a*cos( theta_r );
ellipse_y_r = Y0 + b*sin( theta_r );
rotated_ellipse = R * [ellipse_x_r;ellipse_y_r];
% draw
hold_state = get( axis_handle,'NextPlot' );
set( axis_handle,'NextPlot','add' );
plot( new_ver_line(1,:),new_ver_line(2,:),'r');
plot( new_horz_line(1,:),new_horz_line(2,:),'r');
p1 = plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'r' );
set( axis_handle,'NextPlot',hold_state );
end