forked from tkschuler/EarthSHAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrapezoid.py
129 lines (94 loc) · 3.6 KB
/
trapezoid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from termcolor import colored
import math
import gmplot
import pandas as pd
import matplotlib.pyplot as plt
import os
import GFS
import radiation
import config_earth
if not os.path.exists('trajectories'):
os.makedirs('trajectories')
"""
This file shows an example of using a manual altitude profile to generate a balloon trajectory.
This particular altitude profile is trapezoidal in shape with an ascent/descent velocity 2 and 3 m/s respectively and a float altitude
that is specified in config_earth.
"""
GMT = 7
# Import configuration file variables
coord = config_earth.simulation['start_coord']
start = config_earth.simulation['start_time']
t = start
min_alt = config_earth.simulation['min_alt']
float = config_earth.simulation['float']
dt = config_earth.dt
sim = config_earth.simulation["sim_time"]
GFSrate = config_earth.GFS["GFSrate"]
simulation_time = sim*int(3600*(1/dt)) # Simulation time in seconds
# Initialize trajectroy variables
el = [min_alt] #9000
el_new = min_alt
coords = [coord]
lat = [coord["lat"]]
lon = [coord["lon"]]
gfs = GFS.GFS(coord)
burst = False
gmap1 = gmplot.GoogleMapPlotter(coord["lat"],coord["lon"],8)
ttt=[t]
#sunset = datetime.fromisoformat("2020-02-02 01:30:00")
for i in range(0,simulation_time):
t = t + pd.Timedelta(hours=(1/3600*dt))
if i % GFSrate == 0:
lat_new,lon_new,x_wind_vel,y_wind_vel,bearing,nearest_lat, nearest_lon, nearest_alt = gfs.getNewCoord(coords[i], dt)
coord_new = {
"lat": lat_new, # (deg) Latitude
"lon": lon_new, # (deg) Longitude
"alt": el_new, # (m) Elevation
"timestamp": t, # Timestamp
}
rad = radiation.Radiation()
zen = rad.get_zenith(t, coord_new)
# Trapezoidal Trajectories for faster simulation
if el_new < float and zen < math.radians(90):
el_new += 2
if el_new >= float and zen < math.radians(90):
el_new = float
if zen > math.radians(90):
el_new -= 3
if el_new < min_alt:
el_new = min_alt
el.append(el_new)
coords.append(coord_new)
lat.append(lat_new)
lon.append(lon_new)
ttt.append(t)
# Burst Marker
#if el_new >= 5000:
# gmap1.marker(lat_new, lon_new, color='cornflowerblue')
if i % 360*(1/dt) == 0:
print(str(t - pd.Timedelta(hours=GMT)) #Just for visualizing better
+ " el " + str("{:.4f}".format(el_new))
+ " zen " + str(math.degrees(zen))
)
print(colored(("U wind speed: " + str(x_wind_vel) + " V wind speed: " + str(y_wind_vel) + " Bearing: " + str(bearing)),"yellow"))
print(colored(("Lat: " + str(lat_new) + " Lon: " + str(lon_new)),"green"))
print(colored(("Nearest Lat:" + str(nearest_lat) + " Nearest Lon:" + str(nearest_lon) + " (" + str(360-nearest_lon) +
") Nearest Alt: " + str(nearest_alt)),"cyan"))
# Outline Downloaded NOAA forecast subset:
region= zip(*[
(gfs.LAT_LOW, gfs.LON_LOW),
(gfs.LAT_HIGH, gfs.LON_LOW),
(gfs.LAT_HIGH, gfs.LON_HIGH),
(gfs.LAT_LOW, gfs.LON_HIGH)
])
# Google Plotting of Trajectory
gmap1.plot(lat, lon,'red', edge_width = 2.5)
gmap1.polygon(*region, color='cornflowerblue', edge_width=1, alpha= .2)
gmap1.draw( "trajectories/SHAB_trapezoid_" + str(t.year) + "_" + str(t.month) + "_" + str(start.day) + "_" + str(int(float)) + ".html" )
plt.style.use('seaborn-pastel')
fig, ax = plt.subplots(figsize=(12,10))
ax.plot(ttt,el)
plt.xlabel('Datetime (MST)')
plt.ylabel('Altitude (m)')
plt.title('Altitude Profile for Solar Balloon')
plt.show()