-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnanograd.py
131 lines (98 loc) · 3.5 KB
/
nanograd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from typing import Self
from collections.abc import Callable
from random import uniform
from functools import reduce
class Value:
def __init__(self, data: float, _children: tuple[Self, ...] = ()):
self.data: float = data
self.grad: float = 0
self._backward: Callable[[], None] = lambda: None
self._pre: tuple[Self, ...] = _children
def relu(self) -> Self:
if self.data < 0:
self.data = 0
out = Value(self.data, (self,))
def _backward():
self.grad += out.grad if self.data > 0 else 0
out._backward = _backward
return out
def backward(self):
top_order: list[Self] = []
visited: set[Self] = set()
def build_toporder(n: Self):
if n not in visited:
visited.add(n)
for i in n._pre:
build_toporder(i)
top_order.append(n)
build_toporder(self)
self.grad = 1
for n in top_order[::-1]:
n._backward()
def __repr__(self) -> str:
return f"Value({self.data})"
def __add__(self, other: Self) -> Self:
out: Self = Value(self.data + other.data, _children=(self, other))
def _backward():
self.grad += out.grad
other.grad += out.grad
out._backward = _backward
return out
def __mul__(self, other: Self) -> Self:
out: Self = Value(self.data * other.data, _children=(self, other))
def _backward():
self.grad += out.grad * other.data
other.grad += out.grad * self.data
out._backward = _backward
return out
class Neuron:
def __init__(self, nin: int):
self.ws: list[Value] = [Value(uniform(-1, 1)) for _ in range(nin)]
self.b: Value = Value(0)
def __call__(self, xs: list[Value]) -> Value:
return sum((w * x for w, x in zip(self.ws, xs)), self.b)
def params(self) -> list[Value]:
return self.ws + [self.b]
class Layer:
def __init__(self, nin: int, nout: int):
self.ns: list[Neuron] = [Neuron(nin) for _ in range(nout)]
def __call__(self, x: list[Value]) -> list[Value]:
return [n(x) for n in self.ns]
def params(self) -> list[Value]:
return reduce(lambda x, y: x + y, [n.params() for n in self.ns], [])
class MLP:
def __init__(self, nin: int, nouts: list[int]):
sz = [nin] + nouts
self.layers = [Layer(sz[i], sz[i + 1]) for i in range(len(nouts))]
def __call__(self, x: list[Value]) -> list[Value]:
for l in self.layers:
x = l(x)
return x
def params(self) -> list[Value]:
return reduce(lambda x, y: x + y, [l.params() for l in self.layers], [])
if __name__ == "__main__":
data = [
[2, 3, -1],
[3, -1, 0.5],
[0.5, 1, 1],
[1, 1, -1],
]
ys = [1, -1, -1, 1]
data = [[Value(d) for d in subd] for subd in data]
mlp = MLP(3, [4, 4, 1])
# learning rate
lr = 0.005
for i in range(100):
yds = [mlp(d)[0] for d in data]
loss = sum(((Value(-y) + yd) * (Value(-y) + yd) for y, yd in zip(ys, yds)), Value(0))
# backward
# reset grad with 0
for p in mlp.params():
p.grad = 0
loss.backward()
# update
for p in mlp.params():
p.data += lr * (-p.grad)
if (i + 1) % 10 == 0:
print(f'=====================\niteration {i + 1}', 'loss ', loss.data)
print([mlp(d)[0].data for d in data])