-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathN-Queens.cpp
65 lines (57 loc) · 1.72 KB
/
N-Queens.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
// The n-queens puzzle is the problem of placing n queens on an n×n chessboard
// such that no two queens attack each other.
// Given an integer n, return all distinct solutions to the n-queens puzzle.
// Each solution contains a distinct board configuration of the n-queens' placement,
// where 'Q' and '.' both indicate a queen and an empty space respectively.
// For example,
// There exist two distinct solutions to the 4-queens puzzle:
// [
// [".Q..", // Solution 1
// "...Q",
// "Q...",
// "..Q."],
//
// ["..Q.", // Solution 2
// "Q...",
// "...Q",
// ".Q.."]
// ]
class Solution {
vector<vector<string> > result;
public:
vector<string> getBoard(vector<int> &queenPos, int n) {
vector<string> board(n, string(n, '.'));
for (int i = 0; i < n; i++) {
board[i][queenPos[i]] = 'Q';
}
return board;
}
bool check(vector<int> &queenPos, int row, int col, int n) {
for (int i = 0; i < row; i++) {
if (queenPos[i] == col)
return false;
if (abs(i-row) == abs(queenPos[i]-col))
return false;
}
return true;
}
void putQueen(vector<int> &queenPos, int row, int n) {
if (row == n) {
result.push_back(getBoard(queenPos, n));
return;
}
for (int col = 0; col < n; col++) {
if (check(queenPos, row, col, n)) {
queenPos[row] = col;
putQueen(queenPos, row+1, n);
queenPos[row] = -1;
}
}
}
vector<vector<string> > solveNQueens(int n) {
result.clear();
vector<int> queenPos(n, -1);
putQueen(queenPos, 0, n);
return result;
}
};