forked from TUDelft-SPC-Lab/group-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathf1_calc.py
executable file
·150 lines (117 loc) · 4.23 KB
/
f1_calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import re
import numpy as np
from matplotlib import collections as mc
import math
import random
from dominant_sets import *
# group_thres = T in most papers. The threshold for a correctly detected group
# affinities = rows of affinity predictions
# times = corresponding times
# Groups_at_time = dictionary from time to groups
# Positions = matrix of features at times. Form of row: time, ID001, x, y, ....
# ds_precision_thres = threshold for ending iterative dominant sets matrix algorithm. standard value is 1e-5
# n_features = number of features per person in Positions matrix, including name. eg (ID001, x, y, theta) is 4 features
# non_resuable = flag to set. if True, can't get multiple true groups with the same guess if the accuracy meets the threshold
# for multiple GT groups with the same guess
# dominant_sets = flag to set. if True, uses dominant sets algorithm. if False, uses a naive grouping algorithm
def F1_calc(group_thres, affinities, times, Groups_at_time, Positions, n_people, ds_iteration_thres, n_features, non_reusable=False, dominant_sets=True):
T = group_thres
avg_results = np.array([0.0,0.0])
# this assumes affinities and times are the same length
done = False
prev_time_arr = [-1,-1]
start_idx = 0
num_times = 0
while not done:
num_times += 1
looking = True
end_idx = start_idx
prev_time_arr[0] = times[start_idx].split(':')[0]
prev_time_arr[1] = times[start_idx].split(':')[3]
while looking:
if end_idx == len(times):
done = True
break
time = times[end_idx]
if time.split(':')[0] == prev_time_arr[0] and time.split(':')[3] == prev_time_arr[1]:
end_idx += 1
continue
else:
break
predictions = affinities[start_idx:end_idx]
time = times[start_idx]
time = time.split(':')[0]
predictions = predictions.flatten()
frame_idx = list(Positions[:,0]).index(time)
frame = Positions[frame_idx]
if dominant_sets:
bool_groups = iterate_climb_learned(predictions, frame, n_people, thres=ds_iteration_thres, n_features=n_features)
else:
bool_groups = naive_group(predictions, frame, n_people, thres=ds_iteration_thres, n_features=n_features)
guesses = group_names(bool_groups, n_people)
truth = Groups_at_time[time]
correctness = group_correctness(guesses, truth, T, non_reusable = non_reusable)
TP_n, FN_n, FP_n, precision, recall = correctness
avg_results += np.array([precision, recall])
start_idx = end_idx
# print("p1, r1", precision, recall)
# print("avg results", avg_results)
avg_results /= num_times
if avg_results[0]*avg_results[1] == 0:
f1_avg = 0
else:
f1_avg = float(2)* avg_results[0] * avg_results[1] / (avg_results[0] + avg_results[1])
# Note: GDSR = avg_results[1], (T usually = 0.6)
return f1_avg, avg_results[0], avg_results[1]
## calculates true positives, false negatives, and false positives
## given the guesses, the true groups, and the threshold T
def group_correctness(guesses, truth, T, non_reusable = False):
TP = 0
FN = 0
FP = 0
n_true_groups = len(truth)
n_guess_groups = len(guesses)
for true_group in truth:
if len(true_group) <= 1:
n_true_groups -= 1
for guess in guesses:
if len(guess) <= 1:
n_guess_groups -= 1
continue
for true_group in truth:
if len(true_group) <= 1:
continue
for guess in guesses:
if len(guess) <= 1:
continue
n_found = 0
for person in guess:
if person in true_group:
n_found += 1
if float(n_found) / max(len(true_group), len(guess)) >= T:
if non_reusable == True:
guesses.remove(guess)
TP += 1
if n_true_groups == 0 and n_guess_groups == 0:
return 0,0,0,1,1
elif n_true_groups == 0:
return 0,n_guess_groups,0,0,1
elif n_guess_groups == 0:
return 0,0,n_true_groups, 1, 0
else:
FP = n_guess_groups - TP
FN = n_true_groups - TP
precision = float(TP) / (TP + FP)
recall = float(TP) / (TP + FN)
return TP, FN, FP, precision, recall
# for a set of vectors of the form [0,1,0,...,1], return a set of vectors of group names
# for more efficiency later, we should represent groups the first way, but for now we do this
def group_names(bool_groups, n_people):
groups = []
for bool_group in bool_groups:
group = []
for i in range(n_people):
if (bool_group[i]):
group.append("ID_00" + str(i+1))
groups.append(group)
return groups