forked from TUDelft-SPC-Lab/group-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdominant_sets.py
executable file
·128 lines (105 loc) · 3.28 KB
/
dominant_sets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import math
# functions to execute dominant sets clustering algorithm
# http://homepage.tudelft.nl/3e2t5/HungKrose_ICMI2011.pdf
def symmetrize_A(A, op):
if op == 'max':
W = np.maximum( A, A.transpose() )
elif op== 'min':
W = np.minimum(A, A.transpose())
elif op =='avg':
W = (A + A.transpose())/2
return W
# d-sets function k
def k(S, i, A):
sum_affs = 0
for j in range(len(S)):
if S[j]:
sum_affs += A[i,j]
return 1/np.sum(S) * sum_affs
# d-sets function phi
def phi(S,i,j,A):
return A[i,j] - k(S,i,A)
# d-sets function weight
def weight(S, i, A):
if np.sum(S) == 1:
return 1
else:
R = S.copy()
R[i] = False
sum_weights = 0
for j in range(len(R)):
if R[j]:
sum_weights += phi(R,j,i,A) * weight(R, j, A)
return sum_weights
## optimization function
def f(x, A):
return np.dot(x.T, np.dot(A, x))
## iteratively finds vector x which maximizes f
def vector_climb(A, allowed, num_nodes, original_A, thres=1e-5):
x = np.random.uniform(0,1,num_nodes)
x = np.multiply(x, allowed)
eps = 10
n = 10
while ((eps > 1e-15)):
p = f(x,A)
x = np.multiply(x, np.dot(A,x)) / np.dot(x, np.dot(A,x))
n = f(x,A)
eps = abs(n-p)
groups = x > thres
for i in range(num_nodes):
if not allowed[i]:
if weight(groups,i,original_A) > 0.0:
return []
return groups
# Finds vectors x of people which maximize f. Then removes those people and repeats
def iterate_climb_learned(A, num_nodes):
allowed = np.ones(num_nodes)
groups = []
original_A = A.copy()
while (np.sum(allowed) > 1):
A[allowed == False] = 0
A[:,allowed == False] = 0
if (np.sum(np.dot(allowed,A)) == 0):
break
x = vector_climb(A, allowed, num_nodes, original_A, thres=1e-5)
if len(x) == 0:
break
groups.append(x)
allowed = np.multiply(x == False, allowed)
return groups
def dominant_set_extraction(A,num_nodes,op='min'):
A_= symmetrize_A(A, op)
# print("symmetric A:", A_)
groups = iterate_climb_learned(A_,num_nodes)
return groups
# Groups according to the algorithm in "Recognizing F-Formations in the Open World"
# https://ieeexplore.ieee.org/abstract/document/8673233
def naive_group(predictions, frame, n_people, thres, n_features):
groups = []
A = learned_affinity(n_people, predictions, frame, n_features)
A = np.random.randn(n_people, n_people)
A = A > .5
for i in range(n_people):
A[i, i] = True
A = 1 * A
while np.sum(A) > 0:
most_overlap = -float("inf")
pos = (-1, -1)
for i in range(n_people-1):
B_i = A[i]
for j in range(i+1, n_people):
B_j = A[j]
overlap = B_i.dot(B_j)
if overlap > most_overlap:
most_overlap = overlap
pos = (i, j)
if most_overlap <= 0:
break
group = (A[pos[0]] + A[pos[1]]) > .5
groups.append(group)
for i in range(n_people):
if group[i]:
A[i, :] = 0
A[:, i] = 0
return groups