-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathying.py
146 lines (117 loc) · 4.2 KB
/
ying.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
import matplotlib.pyplot as plt
import imageio
import scipy, scipy.misc, scipy.signal
import cv2
import sys
def computeTextureWeights(fin, sigma, sharpness):
dt0_v = np.vstack((np.diff(fin, n=1, axis=0), fin[0,:]-fin[-1,:]))
dt0_h = np.vstack((np.diff(fin, n=1, axis=1).conj().T, fin[:,0].conj().T-fin[:,-1].conj().T)).conj().T
gauker_h = scipy.signal.convolve2d(dt0_h, np.ones((1,sigma)), mode='same')
gauker_v = scipy.signal.convolve2d(dt0_v, np.ones((sigma,1)), mode='same')
W_h = 1/(np.abs(gauker_h)*np.abs(dt0_h)+sharpness)
W_v = 1/(np.abs(gauker_v)*np.abs(dt0_v)+sharpness)
return W_h, W_v
def solveLinearEquation(IN, wx, wy, lamda):
[r, c] = IN.shape
k = r * c
dx = -lamda * wx.flatten('F')
dy = -lamda * wy.flatten('F')
tempx = np.roll(wx, 1, axis=1)
tempy = np.roll(wy, 1, axis=0)
dxa = -lamda *tempx.flatten('F')
dya = -lamda *tempy.flatten('F')
tmp = wx[:,-1]
tempx = np.concatenate((tmp[:,None], np.zeros((r,c-1))), axis=1)
tmp = wy[-1,:]
tempy = np.concatenate((tmp[None,:], np.zeros((r-1,c))), axis=0)
dxd1 = -lamda * tempx.flatten('F')
dyd1 = -lamda * tempy.flatten('F')
wx[:,-1] = 0
wy[-1,:] = 0
dxd2 = -lamda * wx.flatten('F')
dyd2 = -lamda * wy.flatten('F')
Ax = scipy.sparse.spdiags(np.concatenate((dxd1[:,None], dxd2[:,None]), axis=1).T, np.array([-k+r,-r]), k, k)
Ay = scipy.sparse.spdiags(np.concatenate((dyd1[None,:], dyd2[None,:]), axis=0), np.array([-r+1,-1]), k, k)
D = 1 - ( dx + dy + dxa + dya)
A = ((Ax+Ay) + (Ax+Ay).conj().T + scipy.sparse.spdiags(D, 0, k, k)).T
tin = IN[:,:]
tout = scipy.sparse.linalg.spsolve(A, tin.flatten('F'))
OUT = np.reshape(tout, (r, c), order='F')
return OUT
def tsmooth(img, lamda=0.01, sigma=3.0, sharpness=0.001):
I = cv2.normalize(img.astype('float64'), None, 0.0, 1.0, cv2.NORM_MINMAX)
x = np.copy(I)
wx, wy = computeTextureWeights(x, sigma, sharpness)
S = solveLinearEquation(I, wx, wy, lamda)
return S
def rgb2gm(I):
if (I.shape[2] == 3):
I = cv2.normalize(I.astype('float64'), None, 0.0, 1.0, cv2.NORM_MINMAX)
I = np.abs((I[:,:,0]*I[:,:,1]*I[:,:,2]))**(1/3)
return I
def applyK(I, k, a=-0.3293, b=1.1258):
f = lambda x: np.exp((1-x**a)*b)
beta = f(k)
gamma = k**a
J = (I**gamma)*beta
return J
def entropy(X):
tmp = X * 255
tmp[tmp > 255] = 255
tmp[tmp<0] = 0
tmp = tmp.astype(np.uint8)
_, counts = np.unique(tmp, return_counts=True)
pk = np.asarray(counts)
pk = 1.0*pk / np.sum(pk, axis=0)
S = -np.sum(pk * np.log2(pk), axis=0)
return S
def maxEntropyEnhance(I, isBad, a=-0.3293, b=1.1258):
# Esatimate k
tmp = cv2.resize(I, (50,50), interpolation=cv2.INTER_AREA)
tmp[tmp<0] = 0
tmp = tmp.real
Y = rgb2gm(tmp)
isBad = isBad * 1
isBad = scipy.misc.imresize(isBad, (50,50), interp='bicubic', mode='F')
isBad[isBad<0.5] = 0
isBad[isBad>=0.5] = 1
Y = Y[isBad==1]
if Y.size == 0:
J = I
return J
f = lambda k: -entropy(applyK(Y, k))
opt_k = scipy.optimize.fminbound(f, 1, 7)
# Apply k
J = applyK(I, opt_k, a, b) - 0.01
return J
def Ying_2017_CAIP(img, mu=0.5, a=-0.3293, b=1.1258):
lamda = 0.5
sigma = 5
I = cv2.normalize(img.astype('float64'), None, 0.0, 1.0, cv2.NORM_MINMAX)
# Weight matrix estimation
t_b = np.max(I, axis=2)
t_our = cv2.resize(tsmooth(scipy.misc.imresize(t_b, 0.5, interp='bicubic', mode='F'), lamda, sigma), (t_b.shape[1], t_b.shape[0]), interpolation=cv2.INTER_AREA)
# Apply camera model with k(exposure ratio)
isBad = t_our < 0.5
J = maxEntropyEnhance(I, isBad)
# W: Weight Matrix
t = np.zeros((t_our.shape[0], t_our.shape[1], I.shape[2]))
for i in range(I.shape[2]):
t[:,:,i] = t_our
W = t**mu
I2 = I*W
J2 = J*(1-W)
result = I2 + J2
result = result * 255
result[result > 255] = 255
result[result<0] = 0
return result.astype(np.uint8)
def main():
img_name = sys.argv[1]
img = imageio.imread(img_name)
result = Ying_2017_CAIP(img)
plt.imshow(result)
plt.show()
if __name__ == '__main__':
main()