forked from MurpheyLab/MaxDiffRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
206 lines (181 loc) · 8.47 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python3
import yaml
from termcolor import cprint
import time
from utils import get_duration
import torch
import numpy as np
import random
import pickle
# local imports
from envs import build_env
import argparse
parser = argparse.ArgumentParser()
# these params are the learned model/policy to load
parser.add_argument('--env', type=str, default='SwimmerEnv_v3', help="PointMass2D_DoubleIntEnv,SwimmerEnv_v3, AntEnv_v3, etc.")
parser.add_argument('--method', type=str, default='maxdiff', help='maxdiff, mppi, or sac_orig')
parser.add_argument('--seed', type=int, default=13, help='any positive integer')
parser.add_argument('--done_util', dest='done_util', action='store_true', help='ends epoch with done signal from environment')
parser.add_argument('--no_done_util', dest='done_util', action='store_false', help='ignores done signal from environment and runs for max_steps')
parser.set_defaults(done_util=True)
parser.add_argument('--render', dest='render', action='store_true',help='render each epoch in figure window as running')
parser.add_argument('--no_render', dest='render', action='store_false',help='run offline / without showing plots')
parser.set_defaults(render=False)
parser.add_argument('--cpu', dest='cpu', action='store_true',help='only use CPU')
parser.add_argument('--no_cpu', dest='cpu', action='store_false',help='try to use GPU if available')
parser.set_defaults(cpu=False)
parser.add_argument('--mod', type=str, default='_H40_alpha100',help="end of file name for specfic config after beta (e.g. '_H40' or '_H40_alpha5')")
parser.add_argument('--iters', type=int, default='10',help="how many test iterations to run")
parser.add_argument('--final_only', dest='final_only', action='store_true',help='only test final saved model')
parser.add_argument('--all_frames', dest='final_only', action='store_false',help='save checkpoints and final saved model')
parser.set_defaults(final_only=True)
# this specifies the xml to load
parser.add_argument('--physics_model_eval', type=str, default='orig',help="specify alternate xml file for testing (gym envs only, can be same or different from training)")
parser.add_argument('--base_dir', type=str, default='./data/',help="directory where enviroment folder with data")
parser.add_argument('--start_mode', type=str, default='one_corner',help="(PointMass envs only) one_corner, four_corners, circle10, random")
parser.add_argument('--beta', type=float, default=0.01, help='(PointMass envs only) weights pointmass control matrix (e.g. 1.0, 0.1, 0.01, 0.001) ')
args = parser.parse_args()
cprint(args,'cyan')
args.v3 = 'v3' in args.env
args.pointmass = 'PointMass' in args.env
# added to stop rendering when exiting
from signal import signal, SIGINT
from sys import exit
if args.pointmass:
def end_test():
env.close()
try:
print('saving data set')
pickle.dump(rewards, open(state_dict_path + args.start_mode + '_final_eval_reward_data' + '.pkl', 'wb'))
except NameError:
print('no rewards to save, closing simulation')
fig_path = state_dict_path + args.start_mode + "_eval_" + "final_fig"
if args.render:
viewer.save(fig_path)
else:
try:
traj.save_fig(fig_path + '.svg')
except:
traj.save_buff(fig_path + '.pkl')
def handler(signal_received, frame):
# Handle any cleanup here
print('SIGINT or CTRL-C detected.')
args.render = False
print('Exiting gracefully')
exit(0)
if __name__ == '__main__':
# Tell Python to run the handler() function when SIGINT is recieved
signal(SIGINT, handler)
if args.pointmass:
pm_mod = '_beta'+ '{:0.0e}'.format(args.beta).replace('+','').replace('-','_')
args.mod = pm_mod + args.mod
# load config
state_dict_path = args.base_dir + args.method + '/' + args.env + args.mod + '/seed_{}/'.format(args.seed)
print(state_dict_path)
base_method = args.method[:3]
config_path = state_dict_path + 'config.yaml'
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
if 'H_sequence' in config.keys():
if 'horizon' in config['H_sequence'].keys():
config['planner']['horizon'] = config['H_sequence']['horizon'][-1]
if 'alpha_sequence' in config.keys():
if 'alpha' in config['alpha_sequence'].keys():
config['planner']['alpha'] = config['alpha_sequence']['alpha'][-1]
# set seeds / torch config
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# set torch config
device ='cpu'
if not args.cpu:
if torch.cuda.is_available():
torch.set_num_threads(1)
device = 'cuda:0'
print('Using GPU Accel')
else:
args.cpu = True
# initialize environment
args.mod_weight = args.physics_model_eval
env, env_name, action_dim, state_dim, traj, viewer = build_env(args,config,device)
cprint(env,'green')
print(action_dim,state_dim)
# load models / policies / controllers
if base_method == 'sac':
from sac_lib import PolicyNetwork
policy_net = PolicyNetwork(state_dim, action_dim, config['hidden_dim'],device=device).to(device)
else:
from mpc_lib import Model
model_kwargs = {'model_layers':config['model_layers'],'model_AF':config['model_activation_fun'],
'reward_layers':config['reward_layers'],'reward_AF':config['reward_activation_fun']}
model = Model(state_dim, action_dim, **model_kwargs).to(device)
if base_method == 'mpp':
from mpc_lib import PathIntegral
planner = PathIntegral(model,device=device,**config['planner'])
elif base_method == 'max':
from mpc_lib import MaxDiff
planner = MaxDiff(model,device=device,**config['planner'])
start_time = time.time()
# main simulation loop
max_steps = config['max_steps']
rewards = []
if args.final_only:
test_frames = ['final']
else:
test_frames = [ 100000, 200000, 300000, 400000, 500000, 600000, 700000, 800000, 900000, 1000000]
for test_frame in test_frames:
# load model/policy for particular frame
if base_method == 'mpp':
model.load_state_dict(torch.load(state_dict_path+'model_{}.pt'.format(test_frame), map_location=device))
elif base_method == 'sac':
policy_net.load_state_dict(torch.load(state_dict_path+'policy_{}.pt'.format(test_frame), map_location=device))
elif base_method == 'max':
model.load_state_dict(torch.load(state_dict_path+'model_{}.pt'.format(test_frame), map_location=device))
else:
raise ValueError('method not found')
# test for fixed number of iters
for ep_num in range(args.iters):
state = env.reset()
if base_method == 'sac' :
action = policy_net.get_action(state.copy())
else:
planner.reset()
action = planner(state.copy())
episode_reward = 0
states = []
for step in range(max_steps):
if base_method == 'sac' :
action = policy_net.get_action(state.copy())
else:
action = planner(state.copy())
state, reward, done, _ = env.step(action.copy())
if args.pointmass:
states.append(state)
else:
if args.render:
try:
env.render(mode="human")
except TypeError as err:
env.render()
episode_reward += reward
if args.done_util:
if done:
break
if args.pointmass:
if args.render:
viewer.render(states,ep_num)
traj.push(states,ep_num)
step += 1
if ep_num % (args.iters//10) == 0:
get_duration(start_time)
print(test_frame,f'{ep_num}/{args.iters}', episode_reward, step, state[0])
rewards.append([test_frame, episode_reward,ep_num, step])
env.close()
print('saving reward log')
if args.pointmass:
end_test()
else:
pickle.dump(rewards, open(state_dict_path + '/' + args.physics_model_eval + '_eval_reward_log.pkl', 'wb'))