diff --git a/physics/CONV/Chikira_Sugiyama/cs_conv.F90 b/physics/CONV/Chikira_Sugiyama/cs_conv.F90 index ab7388df8..4e7030dd5 100644 --- a/physics/CONV/Chikira_Sugiyama/cs_conv.F90 +++ b/physics/CONV/Chikira_Sugiyama/cs_conv.F90 @@ -60,6 +60,7 @@ module cs_conv !DD and precipitation. Decrease for more precip real(kind_phys), public :: precz0, preczh, clmd, clmp, clmdpa + real(kind_phys), public, parameter :: c0t=0.002, d0t=0.002 ! ! Private data ! @@ -225,15 +226,17 @@ subroutine cs_conv_run( IJSDIM , KMAX , ntracp1 , NN, & ! ! output arguments of CS_CUMLUS ! - real(kind_phys), dimension(IJSDIM,KMAX,nctp) :: vverti + real(kind_phys), dimension(IJSDIM,KMAX+1,nctp) :: vverti, sigmai real(kind_phys) GTT(IJSDIM,KMAX) !< temperature tendency [K/s] real(kind_phys) GTQ(IJSDIM,KMAX,NTR) !< tracer tendency [kg/kg/s] real(kind_phys) GTU(IJSDIM,KMAX) !< zonal velocity tendency [m/s2] real(kind_phys) GTV(IJSDIM,KMAX) !< meridional velocity tendency [m/s2] - real(kind_phys) GTPRP(IJSDIM,KMAX) !< precipitation (including snowfall) flux at interfaces [kg/m2/s] - real(kind_phys) GSNWP(IJSDIM,KMAX) !< snowfall flux at interfaces [kg/m2/s] - + real(kind_phys) CMDET(IJSDIM,KMAX) !< detrainment mass flux [kg/m2/s] + real(kind_phys) GTPRP(IJSDIM,KMAX+1) !< precipitation (including snowfall) flux at interfaces [kg/m2/s] + real(kind_phys) GSNWP(IJSDIM,KMAX+1) !< snowfall flux at interfaces [kg/m2/s] + real(kind_phys) GMFX0(IJSDIM,KMAX+1) !< updraft mass flux [kg/m2/s] + real(kind_phys) GMFX1(IJSDIM,KMAX+1) !< downdraft mass flux [kg/m2/s] integer KT(IJSDIM,nctp) !< cloud top index for each cloud type real(kind_phys) :: cape(IJSDIM) !< convective available potential energy (J/kg) @@ -377,13 +380,14 @@ subroutine cs_conv_run( IJSDIM , KMAX , ntracp1 , NN, & !> -# Initialize the sigma diagnostics do n=1,nctp - do k=1,kmax + do k=1,kmax+1 do i=ists,iens vverti(i,k,n) = zero + sigmai(i,k,n) = zero enddo enddo enddo - do k=1,kmax + do k=1,kmax+1 do i=ists,iens sigma(i,k) = zero enddo @@ -394,9 +398,9 @@ subroutine cs_conv_run( IJSDIM , KMAX , ntracp1 , NN, & otspt(1:ntr,1), otspt(1:ntr,2), & lprnt , ipr , & GTT , GTQ , GTU , GTV , & ! output - dt_mf , & ! output - GTPRP , GSNWP , ud_mf , & ! output - dd_mf , cape , KT , & ! output + CMDET , & ! output + GTPRP , GSNWP , GMFX0 , & ! output + GMFX1 , cape , KT , & ! output CBMFX , & ! modified GDT , GDQ , GDU , GDV , & ! input GDTM , & ! input @@ -404,7 +408,7 @@ subroutine cs_conv_run( IJSDIM , KMAX , ntracp1 , NN, & delp , delpi , & DELTA , DELTI , ISTS , IENS, mype,& ! input fscav, fswtr, wcbmaxm, nctp, & - sigma, vverti, & ! input/output !DDsigma + sigmai, sigma, vverti, & ! input/output !DDsigma do_aw, do_awdd, flx_form) ! ! @@ -432,6 +436,10 @@ subroutine cs_conv_run( IJSDIM , KMAX , ntracp1 , NN, & t(i,k) = GDT(i,k) + GTT(i,k) * delta u(i,k) = GDU(i,k) + GTU(i,k) * delta v(i,k) = GDV(i,k) + GTV(i,k) * delta +! Set the mass fluxes. + ud_mf (i,k) = GMFX0(i,k) + dd_mf (i,k) = GMFX1(i,k) + dt_mf (i,k) = CMDET(i,k) enddo enddo @@ -458,8 +466,8 @@ subroutine cs_conv_run( IJSDIM , KMAX , ntracp1 , NN, & ! CNV_PRC3(i,k) = 0.0 CNV_NDROP(i,k) = 0.0 CNV_NICE(i,k) = 0.0 - cf_upi(i,k) = max(0.0, min(1.0, 0.5*(sigma(i,k)+sigma(i,kp1)))) - CLCN(i,k) = cf_upi(i,k) !downdraft is below updraft + cf_upi(i,k) = max(0.0,min(0.01*log(1.0+500*ud_mf(i,k)),0.1)) +! CLCN(i,k) = cf_upi(i,k) !downdraft is below updraft !! clcn(i,k) = max(0.0,min(0.01*log(1.0+500*ud_mf(i,k)/delta),0.25)) w_upi(i,k) = 0.0 @@ -492,9 +500,9 @@ subroutine cs_conv_run( IJSDIM , KMAX , ntracp1 , NN, & ! CNV_PRC3(i,k) = 0.0 CNV_NDROP(i,k) = 0.0 CNV_NICE(i,k) = 0.0 - cf_upi(i,k) = max(0.0,min(0.01*log(1.0+500*ud_mf(i,k)),0.25)) + cf_upi(i,k) = max(0.0,min(0.01*log(1.0+500*ud_mf(i,k)),0.1)) ! & 500*ud_mf(i,k)),0.60)) - CLCN(i,k) = cf_upi(i,k) !downdraft is below updraft +! CLCN(i,k) = cf_upi(i,k) !downdraft is below updraft w_upi(i,k) = ud_mf(i,k)*(t(i,k)+epsvt*gdq(i,k,1)) * rair & / (max(cf_upi(i,k),1.e-12)*gdp(i,k)) @@ -586,11 +594,11 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions GDT , GDQ , GDU , GDV , & ! input GDTM , & ! input GDP , GDPM , GDZ , GDZM , & ! input - delp , delpi , & + delp , delpinv , & DELTA , DELTI , ISTS , IENS, mype,& ! input fscav, fswtr, wcbmaxm, nctp, & ! - sigma, vverti, & ! input/output !DDsigma - do_aw, do_awdd, flx_form ) + sigmai, sigma, vverti, & ! input/output !DDsigma + do_aw, do_awdd, flx_form) ! IMPLICIT NONE @@ -598,6 +606,8 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions INTEGER, INTENT(IN) :: im, IJSDIM, KMAX, NTR, mype, nctp, ipr !! DD, for GFS, pass in logical, intent(in) :: do_aw, do_awdd, flx_form ! switch to apply Arakawa-Wu to the tendencies logical, intent(in) :: otspt1(ntr), otspt2(ntr), lprnt + REAL(kind_phys),intent(in) :: DELP (IJSDIM, KMAX) + REAL(kind_phys),intent(in) :: DELPINV (IJSDIM, KMAX) ! ! [OUTPUT] REAL(kind_phys), INTENT(OUT) :: GTT (IJSDIM, KMAX ) ! heating rate @@ -605,35 +615,35 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions REAL(kind_phys), INTENT(OUT) :: GTU (IJSDIM, KMAX ) ! tendency of u REAL(kind_phys), INTENT(OUT) :: GTV (IJSDIM, KMAX ) ! tendency of v REAL(kind_phys), INTENT(OUT) :: CMDET (IJSDIM, KMAX ) ! detrainment mass flux - + REAL(kind_phys) :: GTLDET( IJSDIM, KMAX ) ! cloud liquid tendency by detrainment + REAL(kind_phys) :: GTIDET( IJSDIM, KMAX ) ! cloud ice tendency by detrainment ! assuming there is no flux at the top of the atmospherea - Moorthi - REAL(kind_phys), INTENT(OUT) :: GTPRP (IJSDIM, KMAX ) ! rain+snow flux - REAL(kind_phys), INTENT(OUT) :: GSNWP (IJSDIM, KMAX ) ! snowfall flux - REAL(kind_phys), INTENT(OUT) :: GMFX0 (IJSDIM, KMAX ) ! updraft mass flux - REAL(kind_phys), INTENT(OUT) :: GMFX1 (IJSDIM, KMAX ) ! downdraft mass flux + REAL(kind_phys), INTENT(OUT) :: GTPRP (IJSDIM, KMAX+1 ) ! rain+snow flux + REAL(kind_phys), INTENT(OUT) :: GSNWP (IJSDIM, KMAX+1 ) ! snowfall flux + REAL(kind_phys), INTENT(OUT) :: GMFX0 (IJSDIM, KMAX+1 ) ! updraft mass flux + REAL(kind_phys), INTENT(OUT) :: GMFX1 (IJSDIM, KMAX+1 ) ! downdraft mass flux REAL(kind_phys), INTENT(OUT) :: CAPE (IJSDIM ) INTEGER , INTENT(OUT) :: KT (IJSDIM, NCTP ) ! cloud top ! ! [MODIFIED] - REAL(kind_phys), INTENT(INOUT) :: CBMFX (IM, NCTP) ! cloud base mass flux - -!DDsigma - output added for AW sigma diagnostics -! sigma and vert. velocity as a function of cloud type (1==sfc) - real(kind_phys), intent(out), dimension(IM,KMAX) :: sigma !sigma totaled over cloud type - on interfaces (1=sfc) - real(kind_phys), intent(out), dimension(IM,KMAX,nctp) :: vverti + REAL(kind_phys), INTENT(INOUT) :: CBMFX ( IM, NCTP ) !! cloud base mass flux + !DDsigma - output added for AW sigma diagnostics + real(kind_phys), intent(out) :: sigmai(IM,KMAX+1,nctp) !DDsigma sigma by cloud type - on interfaces (1=sfc) + real(kind_phys), intent(out) :: vverti(IM,KMAX+1,nctp) !DDsigma vert. vel. by cloud type - on interfaces (1=sfc) + real(kind_phys), intent(out) :: sigma(IM,KMAX+1) !DDsigma sigma totaled over cloud type - on interfaces (1=sfc) + ! for computing AW flux form of tendencies -! The tendencies are summed over all cloud types -! real(kind_phys), intent(out), dimension(IM,KMAX) :: & !DDsigmadiag - real(kind_phys), allocatable, dimension(:,:) :: sfluxterm, qvfluxterm,& ! tendencies of DSE and water vapor due to eddy mass flux - qlfluxterm, qifluxterm,& ! tendencies of cloud water and cloud ice due to eddy mass flux +! real(kind_phys), dimension(IM,KMAX) :: & !DDsigmadiag +! sfluxterm, qvfluxterm +! real(kind_phys), dimension(IM,KMAX) :: & !DDsigmadiag +! qlfluxterm, qifluxterm +! real(kind_phys), dimension(ijsdim,kmax,ntrq:ntr) :: trfluxterm ! tendencies of tracers due to eddy mass flux + real(kind_phys), dimension(IM,KMAX) :: & !DDsigmadiag + condtermt, condtermq, frzterm, prectermq, prectermfrz + !DDsigma -! The fluxes are for an individual cloud type and reused. -! condtermt, condtermq are eddy flux of temperature and water vapor - condtermt, condtermq, frzterm, & - prectermq, prectermfrz - real(kind_phys), allocatable, dimension(:,:,:) :: trfluxterm ! tendencies of tracers due to eddy mass flux ! ! [INPUT] REAL(kind_phys), INTENT(IN) :: GDT (IJSDIM, KMAX ) ! temperature T @@ -653,137 +663,144 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions ! ! [INTERNAL WORK] REAL(kind_phys), allocatable :: GPRCC (:, :) ! rainfall -! REAL(kind_phys) GPRCC (IJSDIM, NTR) ! rainfall -! REAL(kind_phys) GSNWC (IJSDIM) ! snowfall -! REAL(kind_phys) CUMCLW(IJSDIM, KMAX) ! cloud water in cumulus -! REAL(kind_phys) CUMFRC(IJSDIM) ! cumulus cloud fraction -! -! REAL(kind_phys) GTCFRC(IJSDIM, KMAX) ! change in cloud fraction -! REAL(kind_phys) FLIQC (IJSDIM, KMAX) ! liquid ratio in cumulus -! -! REAL(kind_phys) GDCFRC(IJSDIM, KMAX) ! cloud fraction -! - REAL(kind_phys) GDW (IJSDIM, KMAX) ! total water - REAL(kind_phys) DELP (IJSDIM, KMAX) - REAL(kind_phys) DELPI (IJSDIM, KMAX) - REAL(kind_phys) GDQS (IJSDIM, KMAX) ! saturate moisture - REAL(kind_phys) FDQS (IJSDIM, KMAX) - REAL(kind_phys) GAM (IJSDIM, KMAX) - REAL(kind_phys) GDS (IJSDIM, KMAX) ! dry static energy - REAL(kind_phys) GDH (IJSDIM, KMAX) ! moist static energy - REAL(kind_phys) GDHS (IJSDIM, KMAX) ! saturate MSE -! - REAL(kind_phys) GCYM (IJSDIM, KMAX, NCTP)! norm. mass flux (half lev) - REAL(kind_phys) GCHB (IJSDIM) ! cloud base MSE-Li*Qi - REAL(kind_phys) GCWB (IJSDIM) ! cloud base total water - REAL(kind_phys) GCUB (IJSDIM) ! cloud base U - REAL(kind_phys) GCVB (IJSDIM) ! cloud base V - REAL(kind_phys) GCIB (IJSDIM) ! cloud base ice - REAL(kind_phys) GCtrB (IJSDIM,ntrq:ntr) ! cloud base tracer - REAL(kind_phys) GCYT (IJSDIM, NCTP) ! norm. mass flux @top - REAL(kind_phys) GCHT (IJSDIM, NCTP) ! cloud top MSE - REAL(kind_phys) GCQT (IJSDIM, NCTP) ! cloud top q - REAL(kind_phys) GCwT (IJSDIM) ! cloud top total water - REAL(kind_phys) GCUT (IJSDIM, NCTP) ! cloud top U - REAL(kind_phys) GCVT (IJSDIM, NCTP) ! cloud top V - REAL(kind_phys) GCLT (IJSDIM, NCTP) ! cloud top cloud water - REAL(kind_phys) GCIT (IJSDIM, NCTP) ! cloud top cloud ice + REAL(kind_phys) GSNWC ( IJSDIM ) ! snowfall + REAL(kind_phys) CUMCLW( IJSDIM, KMAX ) ! cloud water in cumulus + REAL(kind_phys) CUMFRC( IJSDIM ) ! cumulus cloud fraction +!COSP + REAL(kind_phys) QLIQC ( IJSDIM, KMAX ) ! cumulus cloud liquid water [kg/kg] + REAL(kind_phys) QICEC ( IJSDIM, KMAX ) ! cumulus cloud ice [kg/kg] + REAL(kind_phys) GPRCPF( IJSDIM, KMAX ) ! rainfall flux at full level + REAL(kind_phys) GSNWPF( IJSDIM, KMAX ) ! snowfall flux at full level +! + REAL(kind_phys) GTCFRC( IJSDIM, KMAX ) ! change in cloud fraction + REAL(kind_phys) FLIQC ( IJSDIM, KMAX ) ! liquid ratio in cumulus +! +!#ifdef OPT_CHASER +! REAL(kind_phys) RFXC ( IJSDIM, KMAX+1 ) ! precipi. flx [kg/m2/s] +! REAL(kind_phys) SFXC ( IJSDIM, KMAX+1 ) ! ice/snow flx [kg/m2/s] +! INTEGER LEVCUM( IJSDIM, KMAX ) ! flag for cum. cloud top +! REAL(kind_phys) LNFRC ( IJSDIM, KMAX ) ! areal rates of clouds +! REAL(kind_phys) REVC ( IJSDIM, KMAX ) ! evaporation rates +!#endif +! + REAL(kind_phys) GDCFRC( IJSDIM, KMAX ) ! cloud fraction +! +! REAL(kind_phys) GTQL ( IJSDIM, KMAX ) ! tendency of cloud liquid +! + REAL(kind_phys) GDW ( IJSDIM, KMAX ) ! total water + REAL(kind_phys) GDQS ( IJSDIM, KMAX ) ! saturate moisture + REAL(kind_phys) FDQS ( IJSDIM, KMAX ) + REAL(kind_phys) GAM ( IJSDIM, KMAX ) + REAL(kind_phys) GDS ( IJSDIM, KMAX ) ! dry static energy + REAL(kind_phys) GDH ( IJSDIM, KMAX ) ! moist static energy + REAL(kind_phys) GDHS ( IJSDIM, KMAX ) ! saturate MSE +! + REAL(kind_phys) GCYM ( IJSDIM, KMAX, NCTP ) ! norm. mass flux (half lev) + REAL(kind_phys) GCHB ( IJSDIM ) ! cloud base MSE-Li*Qi + REAL(kind_phys) GCWB ( IJSDIM ) ! cloud base total water + REAL(kind_phys) GCtrB ( IJSDIM, ntrq:ntr ) ! cloud base water vapor tracer + REAL(kind_phys) GCUB ( IJSDIM ) ! cloud base U + REAL(kind_phys) GCVB ( IJSDIM ) ! cloud base V + REAL(kind_phys) GCIB ( IJSDIM ) ! cloud base ice + REAL(kind_phys) ELAM ( IJSDIM, KMAX, NCTP ) ! entrainment (rate*massflux) + REAL(kind_phys) GCYT ( IJSDIM, NCTP ) ! norm. mass flux @top + REAL(kind_phys) GCHT ( IJSDIM, NCTP ) ! cloud top MSE + REAL(kind_phys) GCQT ( IJSDIM, NCTP ) ! cloud top q + REAL(kind_phys) GCwT ( IJSDIM ) ! cloud top total water + REAL(kind_phys) GCUT ( IJSDIM, NCTP ) ! cloud top U + REAL(kind_phys) GCVT ( IJSDIM, NCTP ) ! cloud top V + REAL(kind_phys) GCLT ( IJSDIM, NCTP ) ! cloud top cloud water + REAL(kind_phys) GCIT ( IJSDIM, NCTP ) ! cloud top cloud ice REAL(kind_phys) GCtrT (IJSDIM, ntrq:ntr, NCTP) ! cloud top tracer - REAL(kind_phys) GTPRT (IJSDIM, NCTP) ! precipitation/M - REAL(kind_phys) GCLZ (IJSDIM, KMAX) ! cloud liquid for each CTP - REAL(kind_phys) GCIZ (IJSDIM, KMAX) ! cloud ice for each CTP - -! REAL(kind_phys) ACWF (IJSDIM, NCTP) ! cloud work function - REAL(kind_phys) ACWF (IJSDIM ) ! cloud work function - REAL(kind_phys) GPRCIZ(IJSDIM, KMAX) ! precipitation - REAL(kind_phys) GSNWIZ(IJSDIM, KMAX) ! snowfall - REAL(kind_phys) GTPRC0(IJSDIM) ! precip. before evap. - - REAL(kind_phys) GMFLX (IJSDIM, KMAX) ! mass flux (updraft+downdraft) - REAL(kind_phys) QLIQ (IJSDIM, KMAX) ! total cloud liquid - REAL(kind_phys) QICE (IJSDIM, KMAX) ! total cloud ice - REAL(kind_phys) GPRCI (IJSDIM, KMAX) ! rainfall generation - REAL(kind_phys) GSNWI (IJSDIM, KMAX) ! snowfall generation - - REAL(kind_phys) GPRCP (IJSDIM, KMAX) ! rainfall flux -! - REAL(kind_phys) GTEVP (IJSDIM, KMAX) ! evaporation+sublimation - REAL(kind_phys) GMDD (IJSDIM, KMAX) ! downdraft mass flux - -! REAL(kind_phys) CUMHGT(IJSDIM, NCTP) ! cloud top height -! REAL(kind_phys) CTOPP (IJSDIM) ! cloud top pressure - - REAL(kind_phys) GDZTR (IJSDIM) ! tropopause height -! REAL(kind_phys) FLIQOU(IJSDIM, KMAX) ! liquid ratio in cumulus - INTEGER KB (IJSDIM) - INTEGER KSTRT (IJSDIM) ! tropopause level - REAL(kind_phys) GAMX - REAL(kind_phys) CIN (IJSDIM) - INTEGER JBUOY (IJSDIM) - REAL(kind_phys) DELZ, BUOY, DELWC, DELER - REAL(kind_phys) WCBX (IJSDIM) -! REAL(kind_phys) ERMR (NCTP) ! entrainment rate (ASMODE) -! SAVE ERMR - INTEGER KTMX (NCTP) ! max of cloud top - INTEGER KTMXT ! max of cloud top -! REAL(kind_phys) TIMED - REAL(kind_phys) GDCLDX, GDMU2X, GDMU3X -! -! REAL(kind_phys) HBGT (IJSDIM) ! imbalance in column heat -! REAL(kind_phys) WBGT (IJSDIM) ! imbalance in column water + REAL(kind_phys) GTPRT ( IJSDIM, NCTP ) ! precipitation/M + REAL(kind_phys) GCLZ ( IJSDIM, KMAX ) ! cloud liquid for each CTP + REAL(kind_phys) GCIZ ( IJSDIM, KMAX ) ! cloud ice for each CTP + + REAL(kind_phys) ACWF ( IJSDIM ) ! cloud work function + REAL(kind_phys) GPRCIZ( IJSDIM, KMAX+1, NCTP ) ! precipitation + REAL(kind_phys) GSNWIZ( IJSDIM, KMAX+1, NCTP ) ! snowfall + REAL(kind_phys) GTPRC0( IJSDIM ) ! precip. before evap. + + REAL(kind_phys) GMFLX ( IJSDIM, KMAX+1 ) ! mass flux (updraft+downdraft) + REAL(kind_phys) QLIQ ( IJSDIM, KMAX ) ! total cloud liquid + REAL(kind_phys) QICE ( IJSDIM, KMAX ) ! total cloud ice + REAL(kind_phys) GPRCI ( IJSDIM, KMAX ) ! rainfall generation + REAL(kind_phys) GSNWI ( IJSDIM, KMAX ) ! snowfall generation + + REAL(kind_phys) GPRCP ( IJSDIM, KMAX+1 ) ! rainfall flux +! + REAL(kind_phys) GTEVP ( IJSDIM, KMAX ) ! evaporation+sublimation + REAL(kind_phys) GMDD ( IJSDIM, KMAX+1 ) ! downdraft mass flux + + REAL(kind_phys) CUMHGT( IJSDIM, NCTP ) ! cloud top height + REAL(kind_phys) CTOPP ( IJSDIM ) ! cloud top pressure + + REAL(kind_phys) GDZTR ( IJSDIM ) ! tropopause height + REAL(kind_phys) FLIQOU( IJSDIM, KMAX ) ! liquid ratio in cumulus +!#ifdef OPT_CHASER +! REAL(kind_phys) TOPFLX( IJSDIM, NCTP ) !! flux at each cloud top +!#endif + INTEGER KB ( IJSDIM ) + INTEGER KSTRT ( IJSDIM ) ! tropopause level + REAL(kind_phys) GAMX + REAL(kind_phys) CIN ( IJSDIM ) + INTEGER JBUOY ( IJSDIM ) + REAL(kind_phys) DELZ, BUOY, DELWC, DELER +!M REAL(kind_phys) WCB ( NCTP ) ! updraft velocity**2 @base +!M SAVE WCB + REAL(kind_phys) WCBX (IJSDIM) +! REAL(kind_phys) ERMR ( NCTP ) ! entrainment rate (ASMODE) +! SAVE ERMR + INTEGER KTMX ( NCTP ) ! max of cloud top + INTEGER KTMXT ! max of cloud top + REAL(kind_phys) TIMED + REAL(kind_phys) GDCLDX, GDMU2X, GDMU3X +! + LOGICAL OOUT1, OOUT2 + INTEGER KBMX, I, K, CTP, ierr, n, kp1, l, l1, kk, kbi, kmi, km1 + real(kind_phys) tem1, tem2, tem3, cbmfl, mflx_e, teme, tems + + REAL(kind_phys) HBGT ( IJSDIM ) ! imbalance in column heat + REAL(kind_phys) WBGT ( IJSDIM ) ! imbalance in column water -!DDsigma begin local work variables - all on model interfaces (sfc=1) - REAL(kind_phys) lamdai ! lamda for cloud type ctp - REAL(kind_phys) gdqm, gdlm, gdim ! water vapor + !DDsigma begin local work variables - all on model interfaces (sfc=1) + REAL(kind_phys) lamdai( IJSDIM, KMAX+1, nctp ) ! lamda for cloud type ctp + REAL(kind_phys) lamdaprod( IJSDIM, KMAX+1 ) ! product of (1+lamda) through cloud type ctp + REAL(kind_phys) gdrhom ! density + REAL(kind_phys) gdtvm ! virtual temperature + REAL(kind_phys) gdqm, gdwm,gdlm, gdim ! water vaper REAL(kind_phys) gdtrm(ntrq:ntr) ! tracer - -! the following are new arguments to cumup to get them out for AW - REAL(kind_phys) wcv (IJSDIM, KMAX) ! in-cloud vertical velocity - REAL(kind_phys) GCTM (IJSDIM, KMAX) ! cloud T (half lev) !DDsigmadiag make output - REAL(kind_phys) GCQM (IJSDIM, KMAX) ! cloud q (half lev) !DDsigmadiag make output - REAL(kind_phys) GCwM (IJSDIM, KMAX) ! cloud q (half lev) !DDsigmadiag make output - REAL(kind_phys) GCiM (IJSDIM, KMAX) ! cloud q (half lev) !DDsigmadiag make output - REAL(kind_phys) GClM (IJSDIM, KMAX) ! cloud q (half lev) !DDsigmadiag make output - REAL(kind_phys) GChM (IJSDIM, KMAX) ! cloud q (half lev) !DDsigmadiag make output + character(len=4) :: cproc !DDsigmadiag + + ! the following are new arguments to cumup to get them out + REAL(kind_phys) wcv( IJSDIM, KMAX+1, nctp) ! in-cloud vertical velocity + REAL(kind_phys) GCTM ( IJSDIM, KMAX+1 ) ! cloud T (half lev) !DDsigmadiag make output + REAL(kind_phys) GCQM ( IJSDIM, KMAX+1, nctp ) ! cloud q (half lev) !DDsigmadiag make output + REAL(kind_phys) GCwM ( IJSDIM, KMAX+1, nctp ) ! cloud q (half lev) !DDsigmadiag make output + REAL(kind_phys) GCiM ( IJSDIM, KMAX+1 ) ! cloud q (half lev) !DDsigmadiag make output + REAL(kind_phys) GClM ( IJSDIM, KMAX+1 ) ! cloud q (half lev) !DDsigmadiag make output + REAL(kind_phys) GChM ( IJSDIM, KMAX+1, nctp ) ! cloud q (half lev) !DDsigmadiag make output REAL(kind_phys) GCtrM (IJSDIM, KMAX, ntrq:ntr) ! cloud tracer (half lev) !DDsigmadiag make output - -! eddy flux profiles for dse, water vapor, cloud water, cloud ice - REAL(kind_phys), dimension(Kmax+1) :: sfluxtem, qvfluxtem, qlfluxtem, qifluxtem - REAL(kind_phys), dimension(Kmax+1,ntrq:ntr) :: trfluxtem ! tracer - -! tendency profiles - condensation heating, condensation moistening, heating due to -! freezing, total precip production, frozen precip production - REAL(kind_phys), dimension(ijsdim,Kmax) :: dtcondtem, dqcondtem, dtfrztem, dqprectem,& ! Moorthi - dfrzprectem, lamdaprod !< product of (1+lamda) through cloud type ctp - REAL(kind_phys), dimension(ijsdim,Kmax) :: dtevap, dqevap, dtmelt, dtsubl - -! factor to modify precip rate to force conservation of water. With bug fixes it's -! not doing anything now. - REAL(kind_phys), dimension(ijsdim) :: moistening_aw - real(kind_phys), dimension(ijsdim,kmax) :: gctbl, gcqbl,gcwbl, gcqlbl, gcqibl, & !DDsigmadiag updraft profiles below cloud Base - sigmad ! downdraft area fraction + +! these are the fluxes at the interfaces - AW will operate on them + REAL(kind_phys), dimension(ijsdim,Kmax+1,nctp) :: sfluxtem, qvfluxtem, qlfluxtem, qifluxtem + REAL(kind_phys), dimension(ijsdim,Kmax+1,ntrq:ntr,nctp) :: trfluxtem ! tracer + + REAL(kind_phys), dimension(ijsdim,Kmax+1) :: dtcondtem, dqcondtem, dtfrztem, dqprectem,dfrzprectem + REAL(kind_phys), dimension(ijsdim,Kmax) :: dtevap, dqevap, dtmelt, dtsubl + REAL(kind_phys), dimension(ijsdim) :: moistening_aw + real(kind_phys) rhs_q, rhs_h, sftem, qftem, qlftem, qiftem + real(kind_phys), dimension(ijsdim,kmax+1) :: gctbl, gcqbl,gcwbl, gcqlbl, gcqibl !DDsigmadiag updraft profiles below cloud Base real(kind_phys), dimension(ijsdim,kmax,ntrq:ntr) :: gctrbl !DDsigmadiag tracer updraft profiles below cloud Base -! rhs_q, rhs_h are residuals of condensed water, MSE budgets to compute condensation, -! and heating due to freezing - real(kind_phys) :: rhs_q, rhs_h, fsigma, sigmai, delpinv -! real(kind_phys) :: rhs_q, rhs_h, sftem, qftem, qlftem, qiftem, & -! fsigma ! factor to reduce mass flux terms (1-sigma**2) for AW -!DDsigma end local work variables -! -! profiles of heating due to precip evaporation, melting and sublimation, and the -! evap, melting and sublimation rates. - - REAL(kind_phys), allocatable, dimension(:,:) :: dtdwn, & ! t tendency downdraft detrainment - dqvdwn, & ! qv tendency downdraft detrainment - dqldwn, & ! ql tendency downdraft detrainment - dqidwn ! qi tendency downdraft detrainment - REAL(kind_phys), allocatable, dimension(:,:,:) :: dtrdwn ! tracer tendency downdraft detrainment - + real(kind_phys), dimension(ijsdim,kmax+1) :: sigmad + real(kind_phys) :: fsigma( IJSDIM, KMAX+1 ) ! factor to reduce mass flux terms (1-sigma**2) for AW + real(kind_phys) :: lamdamax ! for sorting lamda values + integer loclamdamax + real(kind_phys) :: pr_tot, pr_ice, pr_liq !DDsigma end local work variables ! ! [INTERNAL PARM] - REAL(kind_phys), parameter :: WCBMIN = zero ! min. of updraft velocity at cloud base - + REAL(kind_phys) :: WCBMIN = 0._kind_phys ! min. of updraft velocity at cloud base !M REAL(kind_phys) :: WCBMAX = 1.4_kind_phys ! max. of updraft velocity at cloud base !M wcbas commented by Moorthi since it is not used !M REAL(kind_phys) :: WCBAS = 2._kind_phys ! updraft velocity**2 at cloud base (ASMODE) @@ -791,22 +808,35 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions ! used only in OPT_ASMODE !M REAL(kind_phys) :: ERAMAX = 2.e-3_kind_phys ! max. of entrainment rate ! used only in OPT_ASMODE - LOGICAL :: OINICB = .false. ! set 0.d0 to CBMFX when .true. +! downdraft mass flux terms now slot nctp+1 in the *fluxterm arrays + REAL(kind_phys) dtdwn ( IJSDIM, KMAX ) ! t tendency downdraft detrainment + REAL(kind_phys) dqvdwn ( IJSDIM, KMAX ) ! qv tendency downdraft detrainment + REAL(kind_phys) dqldwn ( IJSDIM, KMAX ) ! ql tendency downdraft detrainment + REAL(kind_phys) dqidwn ( IJSDIM, KMAX ) ! qi tendency downdraft detrainment + REAL(kind_phys), dimension(ijsdim,kmax,ntrq:ntr) :: dtrdwn ! tracer tendency downdraft detrainment + + LOGICAL :: OINICB = .false. ! set 0.d0 to CBMFX -! REAL(kind_phys) :: VARMIN = 1.e-13_kind_phys ! minimum of PDF variance -! REAL(kind_phys) :: VARMAX = 5.e-7_kind_phys ! maximum of PDF variance -! REAL(kind_phys) :: SKWMAX = 0.566_kind_phys ! maximum of PDF skewness + REAL(kind_phys) :: VARMIN = 1.e-13_kind_phys ! minimum of PDF variance + REAL(kind_phys) :: VARMAX = 5.e-7_kind_phys ! maximum of PDF variance + REAL(kind_phys) :: SKWMAX = 0.566_kind_phys ! maximum of PDF skewness - REAL(kind_phys) :: PSTRMX = 400.e2_kind_phys ! max P of tropopause - REAL(kind_phys) :: PSTRMN = 50.e2_kind_phys ! min P of tropopause - REAL(kind_phys) :: GCRSTR = 1.e-4_kind_phys ! crit. dT/dz tropopause + REAL(kind_phys) :: PSTRMX = 400.e2_kind_phys ! max P of tropopause + REAL(kind_phys) :: PSTRMN = 50.e2_kind_phys ! min P of tropopause + REAL(kind_phys) :: GCRSTR = 1.e-4_kind_phys ! crit. dT/dz tropopause - real(kind=kind_phys) :: tem, esat, mflx_e, cbmfl, tem1, tem2, tem3 - INTEGER :: KBMX, I, K, CTP, ierr, n, kp1, km1, kk, kbi, l, l1 + ! 0: mass fixer is not applied + ! tracers which may become negative values + ! e.g. subgrid-PDFs + ! 1: mass fixer is applied, total mass may change through cumulus scheme + ! e.g. moisture, liquid cloud, ice cloud, aerosols + ! 2: mass fixer is applied, total mass never change through cumulus scheme + ! e.g. CO2 + real(kind=kind_phys), parameter :: zero=0.0, one=1.0 + real(kind=kind_phys) :: tem, esat ! - LOGICAL, SAVE :: OFIRST = .TRUE. ! called first time? + LOGICAL, SAVE :: OFIRST = .TRUE. ! called first time? ! - IF (OFIRST) THEN OFIRST = .FALSE. IF (OINICB) THEN @@ -814,6 +844,8 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions ENDIF ENDIF ! + + kp1 = kmax + 1 do n=1,ntr do k=1,kmax do i=1,ijsdim @@ -821,65 +853,82 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions enddo enddo enddo - + do k=1,kmax+1 + do i=1,ijsdim + gmflx(i,k) = zero + gmfx0(i,k) = zero + enddo + enddo do k=1,kmax do i=1,ijsdim - gtt(i,k) = zero - gtu(i,k) = zero - gtv(i,k) = zero - gmflx(i,k) = zero - gmfx0(i,k) = zero - gprci(i,k) = zero - gsnwi(i,k) = zero - qliq(i,k) = zero - qice(i,k) = zero -! gtcfrc(i,k) = zero -! cumclw(i,k) = zero -! fliqc(i,k) = zero - sigma(i,k) = zero + gtt(i,k) = zero + gtu(i,k) = zero + gtv(i,k) = zero + gprci(i,k) = zero + gsnwi(i,k) = zero + qliq(i,k) = zero + qice(i,k) = zero +! gtcfrc(i,k) = zero +! cumclw(i,k) = zero +! fliqc(i,k) = zero + fliqou(i,k) = zero + gprcpf(i,k) = zero + gsnwpf(i,k) = zero + cmdet(i,k) = zero enddo enddo if (flx_form) then - allocate(sfluxterm(ijsdim,kmax), qvfluxterm(ijsdim,kmax), qlfluxterm(ijsdim,kmax), & - qifluxterm(ijsdim,kmax), condtermt(ijsdim,kmax), condtermq(ijsdim,kmax), & - frzterm(ijsdim,kmax), prectermq(ijsdim,kmax), prectermfrz(ijsdim,kmax), & - dtdwn(ijsdim,kmax), dqvdwn(ijsdim,kmax), dqldwn(ijsdim,kmax), & - dqidwn(ijsdim,kmax), trfluxterm(ijsdim,kmax,ntrq:ntr), & - dtrdwn(ijsdim,kmax,ntrq:ntr)) - do k=1,kmax - do i=1,ijsdim - sfluxterm(i,k) = zero - qvfluxterm(i,k) = zero - qlfluxterm(i,k) = zero - qifluxterm(i,k) = zero - condtermt(i,k) = zero - condtermq(i,k) = zero - frzterm(i,k) = zero - prectermq(i,k) = zero - prectermfrz(i,k) = zero - dtdwn(i,k) = zero - dqvdwn(i,k) = zero - dqldwn(i,k) = zero - dqidwn(i,k) = zero - cmdet(i,k) = zero + do ctp = 1,nctp + do k=1,kp1 + do i=1,ijsdim + sfluxtem(i,k,ctp) = zero + qvfluxtem(i,k,ctp) = zero + qlfluxtem(i,k,ctp) = zero + qifluxtem(i,k,ctp) = zero + enddo + enddo + do n = ntrq,ntr + do k=1,kp1 + do i=1,ijsdim + trfluxtem(i,k,n,ctp) = zero + enddo + enddo enddo enddo - do n = ntrq,ntr do k=1,kmax do i=1,ijsdim - trfluxterm(i,k,n) = zero - dtrdwn(i,k,n) = zero + condtermt(i,k) = zero + condtermq(i,k) = zero + frzterm(i,k) = zero + prectermq(i,k) = zero + prectermfrz(i,k) = zero enddo enddo - enddo + do k=1,kmax + do i=1,ijsdim + dtdwn(i,k) = zero + dqvdwn(i,k) = zero + dqldwn(i,k) = zero + dqidwn(i,k) = zero + enddo + enddo + do n = ntrq,ntr + do k=1,kmax + do i=1,ijsdim + dtrdwn(i,k,n) = zero + enddo + enddo + enddo endif do i=1,ijsdim -! gprcc(i,:) = zero - gtprc0(i) = zero -! hbgt(i) = zero -! wbgt(i) = zero - gdztr(i) = zero - kstrt(i) = kmax +! gprcc(i,:) = zero +! gmflx(i,kp1) = zero + gmfx0(i,kp1) = zero + gtprc0(i) = zero +! hbgt(i) = zero +! wbgt(i) = zero + gdztr(i) = zero + kstrt(i) = kmax enddo do k=1,kmax @@ -907,9 +956,8 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions ! !> -# Compute tropopause height (GDZTR) DO K=1,KMAX - kp1 = k + 1 DO I=ISTS,IENS - GAMX = (GDTM(I,KP1)-GDTM(I,K)) / (GDZM(I,KP1)-GDZM(I,K)) + GAMX = (GDTM(I,K+1)-GDTM(I,K)) / (GDZM(I,K+1)-GDZM(I,K)) IF ((GDP(I,K) < PSTRMX .AND. GAMX > GCRSTR) .OR. GDP(I,K) < PSTRMN) THEN KSTRT(I) = MIN(K, KSTRT(I)) ENDIF @@ -925,12 +973,12 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions !> -# Call cumbas() to compute cloud base properties CALL CUMBAS(IJSDIM, KMAX , & !DD dimensions - KB , GCYM(1,1,1) , KBMX , & ! output + KB , GCYM(:,:,1) , KBMX , & ! output ntr , ntrq , & GCHB , GCWB , GCUB , GCVB , & ! output GCIB , gctrb, & ! output GDH , GDW , GDHS , GDQS , & ! input - GDQ(1,1,iti) , GDU , GDV , GDZM , & ! input + GDQ(:,:,iti) , GDU , GDV , GDZM , & ! input GDPM , FDQS , GAM , & ! input lprnt, ipr, & ISTS , IENS , & !) ! input @@ -955,7 +1003,7 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions CAPE(I) = CAPE(I) + BUOY * GRAV * (GDZM(I,K+1) - GDZM(I,K)) JBUOY(I) = 2 ELSEIF (BUOY < zero .AND. JBUOY(I) /= 2) THEN - CIN(I) = CIN(I) - BUOY * GRAV * (GDZM(I,K+1) - GDZM(I,K)) + CIN(I) = CIN(I) + BUOY * GRAV * (GDZM(I,K+1) - GDZM(I,K)) JBUOY(I) = -1 ENDIF endif @@ -968,12 +1016,25 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions !DDsigma some initialization before summing over cloud type !> -# Initialize variables before summing over cloud types - do k=1,kmax ! Moorthi + if(flx_form) then + do k=1,kp1 ! Moorthi do i=1,ijsdim lamdaprod(i,k) = one + sigma(i,k) = 0.0 enddo enddo + do ctp=1,nctp + do k=1,kp1 + do i=1,ijsdim + lamdai(i,k,ctp) = zero + sigmai(i,k,ctp) = zero + vverti(i,k,ctp) = zero + enddo + enddo + enddo + endif + do ctp=2,nctp do k=1,kmax do i=1,ijsdim @@ -990,15 +1051,6 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions WCBX(I) = DELWC * DELWC enddo - do k=1,kmax ! Moorthi - do i=1,ijsdim - dqcondtem(i,k) = zero - dqprectem(i,k) = zero - dfrzprectem(i,k) = zero - dtfrztem(i,k) = zero - dtcondtem(i,k) = zero - enddo - enddo ! getting more incloud profiles of variables to compute eddy flux tendencies ! and condensation rates @@ -1010,51 +1062,48 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions !> -# Call cumup() to compute in-cloud properties CALL CUMUP(IJSDIM, KMAX, NTR, ntrq, & !DD dimensions ACWF , & ! output - GCLZ , GCIZ , GPRCIZ , GSNWIZ, & ! output - GCYT(1,CTP) , GCHT(1,CTP) , GCQT (1,CTP), & ! output - GCLT(1,CTP) , GCIT(1,CTP) , GTPRT(1,CTP), & ! output - GCUT(1,CTP) , GCVT(1,CTP) , gctrt(1,ntrq:ntr,ctp), & ! output - KT (1,CTP) , KTMX(CTP) , & ! output - GCYM(1,1,CTP) , & ! modified - wcv , & ! !DD-sigma new output + GCLZ , GCIZ , GPRCIZ(:,:,CTP), GSNWIZ(:,:,CTP), & ! output + GCYT(:,CTP) , GCHT(:,CTP) , GCQT (:,CTP), & ! output + GCLT(:,CTP) , GCIT(:,CTP) , GTPRT(:,CTP), & ! output + GCUT(:,CTP) , GCVT(:,CTP) , gctrt(:,ntrq:ntr,ctp), & ! output + KT (:,CTP) , KTMX(CTP) , & ! output + GCYM(:,:,CTP) , & ! modified + wcv(:,:,CTP) , & ! !DD-sigma new output GCHB , GCWB , GCUB , GCVB , & ! input !DDsigmadiag GCIB , gctrb , & ! input GDU , GDV , GDH , GDW , & ! input GDHS , GDQS , GDT , GDTM , & ! input - GDQ , GDQ(1,1,iti) , GDZ , GDZM , & ! input + GDQ , GDQ(:,:,iti) , GDZ , GDZM , & ! input GDPM , FDQS , GAM , GDZTR , & ! input CPRES , WCBX , & ! input KB , CTP , ISTS , IENS , & ! input - gctm , gcqm, gcwm, gchm, gcwt, gclm, gcim, gctrm, & ! additional incloud profiles and cloud top total water + gctm , gcqm(:,:,CTP), gcwm(:,:,CTP), gchm(:,:,CTP),& + gcwt, gclm, gcim, gctrm, & ! additional incloud profiles and cloud top total water lprnt , ipr ) ! !> -# Call cumbmx() to compute cloud base mass flux CALL CUMBMX(IJSDIM, KMAX, & !DD dimensions - CBMFX(1,CTP), & ! modified - ACWF , GCYT(1,CTP), GDZM , & ! input + CBMFX(:,CTP), & ! modified + ACWF , GCYT(:,CTP), GDZM , & ! input GDW , GDQS , DELP , & ! input - KT (1,CTP), KTMX(CTP) , KB , & ! input + KT (:,CTP), KTMX(CTP) , KB , & ! input DELTI , ISTS , IENS ) !DDsigma - begin sigma computation ! At this point cbmfx is updated and we have everything we need to compute sigma - do i=ISTS,IENS - if (flx_form) then -!> -# Initialize eddy fluxes for cloud types - do k=1,kmax+1 - sfluxtem(k) = zero - qvfluxtem(k) = zero - qlfluxtem(k) = zero - qifluxtem(k) = zero - enddo - do n=ntrq,ntr ! tracers - do k=1,kmax+1 - trfluxtem(k,n) = zero - enddo + if (flx_form) then + do k=1,kmax + 1 ! Moorthi + do i=1,ijsdim + dqcondtem(i,k) = zero + dqprectem(i,k) = zero + dfrzprectem(i,k) = zero + dtfrztem(i,k) = zero + dtcondtem(i,k) = zero enddo - endif + enddo + do i=ISTS,IENS cbmfl = cbmfx(i,ctp) kk = kt(i,ctp) ! cloud top index @@ -1062,56 +1111,54 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions kbi = kb(i) ! cloud base index do k=kbi,kk ! loop from cloud base to cloud top km1 = k - 1 - rhs_h = zero - rhs_q = zero -!> -# Interpolate environment variables to layer interface +! get environment variables interpolated to layer interface GDQM = half * (GDQ(I,K,1) + GDQ(I,KM1,1)) ! as computed in cumup ! GDwM = half * (GDw(I,K) + GDw(I,KM1 )) - GDlM = half * (GDQ(I,K,3) + GDQ(I,KM1,3)) - GDiM = half * (GDQ(I,K,2) + GDQ(I,KM1,2)) + GDlM = half * (GDQ(I,K,itl) + GDQ(I,KM1,itl)) + GDiM = half * (GDQ(I,K,iti) + GDQ(I,KM1,iti)) do n = ntrq,NTR GDtrM(n) = half * (GDQ(I,K,n) + GDQ(I,KM1,n)) ! as computed in cumup enddo mflx_e = gcym(i,k,ctp) * cbmfl ! mass flux at level k for cloud ctp - if (do_aw) then !> -# Compute lamda for a cloud type and then updraft area fraction !! (sigmai) following Equations 23 and 12 of !! Arakawa and Wu (2013) \cite arakawa_and_wu_2013 , respectively - lamdai = mflx_e * rair * gdtm(i,k)*(one+epsvt*gdqm) & - / (gdpm(i,k)*wcv(i,k)) - lamdaprod(i,k) = lamdaprod(i,k) * (one+lamdai) - -! vverti(i,k,ctp) = wcv(i,k) -! sigmai(i,k,ctp) = lamdai / lamdaprod(i,k) -! sigma(i,k) = max(zero, min(one, sigma(i,k) + sigmai(i,k,ctp))) - - sigmai = lamdai / lamdaprod(i,k) - sigma(i,k) = max(zero, min(one, sigma(i,k) + sigmai)) - vverti(i,k,ctp) = sigmai * wcv(i,k) - else - sigma(i,k) = 0.0 - endif + lamdai(i,k,ctp) = mflx_e * rair * gdtm(i,k)*(one+epsvt*gdqm) & + / (gdpm(i,k)*wcv(i,k,ctp)) + +! just compute lamdai here, we will compute sigma, sigmai, and vverti outside +! the cloud type loop after we can sort lamdai +! lamdaprod(i,k) = lamdaprod(i,k) * (one+lamdai(i,k,ctp)) +! +!! vverti(i,k,ctp) = wcv(i,k) +!! sigmai(i,k,ctp) = lamdai / lamdaprod(i,k) +!! sigma(i,k) = max(zero, min(one, sigma(i,k) + sigmai(i,k,ctp))) +! +! sigmai(i,k,ctp) = lamdai(i,k,ctp) / lamdaprod(i,k) +! sigma(i,k) = max(zero, min(one, sigma(i,k) + sigmai(i,k,ctp))) +! vverti(i,k,ctp) = sigmai(i,k,ctp) * wcv(i,k,ctp) - if (flx_form) then +! sigma effect won't be applied until later, when lamda is sorted ! fsigma = 1.0 ! no aw effect, comment following lines to undo AW - fsigma = one - sigma(i,k) +! fsigma = one - sigma(i,k) !> -# Compute tendencies based on mass flux and condensation ! fsigma is the AW reduction of flux tendencies if(k == kbi) then do l=2,kbi ! compute eddy fluxes below cloud base - tem = - fsigma * gcym(i,l,ctp) * cbmfl +! tem = - fsigma * gcym(i,l,ctp) * cbmfl + tem = - gcym(i,l,ctp) * cbmfl ! first get environment variables at layer interface l1 = l - 1 GDQM = half * (GDQ(I,l,1) + GDQ(I,l1,1)) - GDlM = half * (GDQ(I,l,3) + GDQ(I,l1,3)) - GDiM = half * (GDQ(I,l,2) + GDQ(I,l1,2)) + GDlM = half * (GDQ(I,l,itl) + GDQ(I,l1,itl)) + GDiM = half * (GDQ(I,l,iti) + GDQ(I,l1,iti)) !! GDwM = half * (GDw(I,l) + GDw(I,l1)) do n = ntrq,NTR GDtrM(n) = half * (GDQ(I,l,n) + GDQ(I,l1,n)) ! as computed in cumup @@ -1119,12 +1166,12 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions ! flux = mass flux * (updraft variable minus environment variable) !centered differences - sfluxtem(l) = tem * (gdtm(i,l)-gctbl(i,l)) - qvfluxtem(l) = tem * (gdqm-gcqbl(i,l)) - qlfluxtem(l) = tem * (gdlm-gcqlbl(i,l)) - qifluxtem(l) = tem * (gdim-gcqibl(i,l)) + sfluxtem(i,l,ctp) = tem * (gdtm(i,l)-gctbl(i,l)) + qvfluxtem(i,l,ctp) = tem * (gdqm-gcqbl(i,l)) + qlfluxtem(i,l,ctp) = tem * (gdlm-gcqlbl(i,l)) + qifluxtem(i,l,ctp) = tem * (gdim-gcqibl(i,l)) do n = ntrq,NTR - trfluxtem(l,n) = tem * (gdtrm(n)-gctrbl(i,l,n)) + trfluxtem(i,l,n,ctp) = tem * (gdtrm(n)-gctrbl(i,l,n)) enddo ! if(lprnt .and. i == ipr) write(0,*)' l=',l,' kbi=',kbi,' tem =', tem,' trfluxtem=',trfluxtem(l,ntr),& ! ' gdtrm=',gdtrm(ntr),' gctrbl=',gctrbl(i,l,ntr),' gq=',GDQ(I,l,ntr),GDQ(I,l1,ntr),' l1=',l1,' ctp=',ctp,& @@ -1146,14 +1193,15 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions else ! flux = mass flux * (updraft variable minus environment variable) - tem = - fsigma * mflx_e +! tem = - fsigma * mflx_e + tem = - mflx_e !centered - sfluxtem(k) = tem * (gdtm(i,k)+gocp*gdzm(i,k)-gctm(i,k)) - qvfluxtem(k) = tem * (gdqm-gcqm(i,k)) - qlfluxtem(k) = tem * (gdlm-gclm(i,k)) - qifluxtem(k) = tem * (gdim-gcim(i,k)) + sfluxtem(i,k,ctp) = tem * (gdtm(i,k)+gocp*gdzm(i,k)-gctm(i,k)) + qvfluxtem(i,k,ctp) = tem * (gdqm-gcqm(i,k,ctp)) + qlfluxtem(i,k,ctp) = tem * (gdlm-gclm(i,k)) + qifluxtem(i,k,ctp) = tem * (gdim-gcim(i,k)) do n = ntrq,NTR - trfluxtem(k,n) = tem * (gdtrm(n)-gctrm(i,k,n)) + trfluxtem(i,k,n,ctp) = tem * (gdtrm(n)-gctrm(i,k,n)) enddo !upstream - This better matches what the original CS tendencies do @@ -1185,117 +1233,57 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions ! ' fsigma=',fsigma,' mflx_e=',mflx_e,' trfluxtemk=',trfluxtem(k,ntr),' sigma=',sigma(i,k) -! the condensation terms - these come from the MSE and condensed water budgets for -! an entraining updraft -! if(k > kb(i)) then ! comment for test -! if(k <= kk) then ! Moorthi -! if(k < kt(i,ctp)) then -! rhs_h = cbmfl*(gcym(i,k)*gchm(i,k) - (gcym(i,km1)*gchm(i,km1) & -! + GDH(I,Km1 )*(gcym(i,k)-gcym(i,km1))) ) -! rhs_q = cbmfl*(gcym(i,k)*(gcwm(i,k)-gcqm(i,k)) & -! - (gcym(i,km1)*(gcwm(i,km1)-gcqm(i,km1)) & -! + (GDw( I,Km1 )-gdq(i,km1,1))*(gcym(i,k)-gcym(i,km1))) ) -! tem = cbmfl * (one - sigma(i,k)) - tem = cbmfl * (one - 0.5*(sigma(i,k)+sigma(i,km1))) - tem1 = gcym(i,k,ctp) * (one - sigma(i,k)) - tem2 = gcym(i,km1,ctp) * (one - sigma(i,km1)) - rhs_h = cbmfl * (tem1*gchm(i,k) - (tem2*gchm(i,km1) & - + GDH(I,Km1)*(tem1-tem2)) ) - rhs_q = cbmfl * (tem1*(gcwm(i,k)-gcqm(i,k)) & - - (tem2*(gcwm(i,km1)-gcqm(i,km1)) & - + (GDw(I,Km1)-gdq(i,km1,1))*(tem1-tem2)) ) - -! ELSE -! rhs_h = cbmfl*(gcht(i,ctp) - (gcym(i,k-1)*gchm(i,k-1) + GDH( I,K-1 )*(gcyt(i,ctp)-gcym(i,k-1))) ) -! rhs_q = cbmfl*((gcwt(i)-gcqt(i,ctp)) - (gcym(i,k-1)*(gcwm(i,k-1)-gcqm(i,k-1)) + (GDw( I,K-1 )-gdq(i,k-1,1))*(gcyt(i,ctp)-gcym(i,k-1))) ) -! endif - -!> -# Compute condensation, total precipitation production, frozen precipitation production, -!! heating due to freezing, and total temperature tendency due to in-cloud microphysics - dqcondtem(i,km1) = -rhs_q ! condensation -! dqprectem(i,km1) = cbmfl * (GPRCIZ(i,k) + GSNWIZ(i,k)) - dqprectem(i,km1) = tem * (GPRCIZ(i,k) + GSNWIZ(i,k)) ! total precip production -! dfrzprectem(i,km1) = cbmfl * GSNWIZ(i,k) - dfrzprectem(i,km1) = tem * GSNWIZ(i,k) ! production of frozen precip - dtfrztem(i,km1) = rhs_h*oneocp ! heating due to freezing - dtcondtem(i,km1) = - elocp * dqcondtem(i,km1) + dtfrztem(i,km1) - endif ! if(k > kbi) then - endif ! if (flx_form) enddo ! end of k=kbi,kk loop endif ! end of if(cbmfl > zero) -! get tendencies by difference of fluxes, sum over cloud type - - if (flx_form) then - do k = 1,kk - delpinv = delpi(i,k) -!> -# Sum single cloud microphysical tendencies over all cloud types - condtermt(i,k) = condtermt(i,k) + dtcondtem(i,k) * delpinv - condtermq(i,k) = condtermq(i,k) + dqcondtem(i,k) * delpinv - prectermq(i,k) = prectermq(i,k) + dqprectem(i,k) * delpinv - prectermfrz(i,k) = prectermfrz(i,k) + dfrzprectem(i,k) * delpinv - frzterm(i,k) = frzterm(i,k) + dtfrztem(i,k) * delpinv - -!> -# Compute flux tendencies and vertical flux divergence - sfluxterm(i,k) = sfluxterm(i,k) - (sfluxtem(k+1) - sfluxtem(k)) * delpinv - qvfluxterm(i,k) = qvfluxterm(i,k) - (qvfluxtem(k+1) - qvfluxtem(k)) * delpinv - qlfluxterm(i,k) = qlfluxterm(i,k) - (qlfluxtem(k+1) - qlfluxtem(k)) * delpinv - qifluxterm(i,k) = qifluxterm(i,k) - (qifluxtem(k+1) - qifluxtem(k)) * delpinv - do n = ntrq,ntr - trfluxterm(i,k,n) = trfluxterm(i,k,n) - (trfluxtem(k+1,n) - trfluxtem(k,n)) * delpinv - enddo -! if (lprnt .and. i == ipr) write(0,*)' k=',k,' trfluxtem=',trfluxtem(k+1,ntr),trfluxtem(k,ntr),& -! ' ctp=',ctp,' trfluxterm=',trfluxterm(i,k,ntr) - enddo - endif ! if (flx_form) enddo ! end of i loop -! - do i=ists,iens - if (cbmfx(i,ctp) > zero) then - tem = one - sigma(i,kt(i,ctp)) - gcyt(i,ctp) = tem * gcyt(i,ctp) - gtprt(i,ctp) = tem * gtprt(i,ctp) - gclt(i,ctp) = tem * gclt(i,ctp) - gcht(i,ctp) = tem * gcht(i,ctp) - gcqt(i,ctp) = tem * gcqt(i,ctp) - gcit(i,ctp) = tem * gcit(i,ctp) - if (.not. flx_form) then - do n = ntrq,ntr - gctrt(i,n,ctp) = tem * gctrt(i,n,ctp) - enddo - end if - gcut(i,ctp) = tem * gcut(i,ctp) - gcvt(i,ctp) = tem * gcvt(i,ctp) - do k=1,kmax - kk = kb(i) - if (k < kk) then - tem = one - sigma(i,kk) - tem1 = tem - else - tem = one - sigma(i,k) - tem1 = one - 0.5*(sigma(i,k)+sigma(i,k-1)) - endif - gcym(i,k,ctp) = tem * gcym(i,k,ctp) - gprciz(i,k) = tem1 * gprciz(i,k) - gsnwiz(i,k) = tem1 * gsnwiz(i,k) - gclz(i,k) = tem1 * gclz(i,k) - gciz(i,k) = tem1 * gciz(i,k) - enddo - endif - enddo + endif ! if (flx_form) +! +! we don't reduce these values in AW, just the tendencies due to fluxes +! do i=ists,iens +! if (cbmfx(i,ctp) > zero) then +! tem = one - sigma(i,kt(i,ctp)) +! gcyt(i,ctp) = tem * gcyt(i,ctp) +! gtprt(i,ctp) = tem * gtprt(i,ctp) +! gclt(i,ctp) = tem * gclt(i,ctp) +! gcht(i,ctp) = tem * gcht(i,ctp) +! gcqt(i,ctp) = tem * gcqt(i,ctp) +! gcit(i,ctp) = tem * gcit(i,ctp) +! do n = ntrq,ntr +! gctrt(i,n,ctp) = tem * gctrt(i,n,ctp) +! enddo +! gcut(i,ctp) = tem * gcut(i,ctp) +! gcvt(i,ctp) = tem * gcvt(i,ctp) +! do k=1,kmax +! kk = kb(i) +! if (k < kk) then +! tem = one - sigma(i,kk) +! tem1 = tem +! else +! tem = one - sigma(i,k) +! tem1 = one - 0.5*(sigma(i,k)+sigma(i,k-1)) +! endif +! gcym(i,k,ctp) = tem * gcym(i,k,ctp) +! gprciz(i,k) = tem1 * gprciz(i,k) +! gsnwiz(i,k) = tem1 * gsnwiz(i,k) +! gclz(i,k) = tem1 * gclz(i,k) +! gciz(i,k) = tem1 * gciz(i,k) +! enddo +! endif +! enddo ! !> -# Call cumflx() to compute cloud mass flux and precipitation CALL CUMFLX(IM , IJSDIM, KMAX , & !DD dimensions GMFX0 , GPRCI , GSNWI , CMDET, & ! output QLIQ , QICE , GTPRC0, & ! output - CBMFX(1,CTP) , GCYM(1,1,ctp), GPRCIZ , GSNWIZ , & ! input - GTPRT(1,CTP) , GCLZ , GCIZ , GCYT(1,ctp),& ! input - KB , KT(1,CTP) , KTMX(CTP) , & ! input + CBMFX(:,CTP) , GCYM(:,:,ctp), GPRCIZ(:,:,CTP), GSNWIZ(:,:,CTP) , & ! input + GTPRT(:,CTP) , GCLZ , GCIZ , GCYT(:,ctp),& ! input + KB , KT(:,CTP) , KTMX(CTP) , & ! input ISTS , IENS ) ! input ENDDO ! end of cloud type ctp loop @@ -1333,46 +1321,127 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions GDH , GDQ , GDU , GDV , & ! input ! GTT , GTQ , GTCFRC, GTU , GTV , & ! modified ! GDH , GDQ , GDCFRC, GDU , GDV , & ! input - CBMFX , GCYT , DELPI , GCHT , GCQT , & ! input - GCLT , GCIT , GCUT , GCVT , GDQ(1,1,iti),& ! input + CBMFX , GCYT , DELPInv , GCHT , GCQT , & ! input + GCLT , GCIT , GCUT , GCVT , GDQ(:,:,iti),& ! input gctrt , & KT , ISTS , IENS, nctp ) ! input endif !for now area fraction of the downdraft is zero, it will be computed -! within cumdwn and applied there -! Get AW downdraft eddy flux and microphysical tendencies out of downdraft code. +! within cumdwn and applied there. So we will get the total sigma now before calling it, +! and apply to the diabatic terms from the updrafts. - do k=1,kmax - do i=ists,iens - sigmad(i,k) = zero - enddo - enddo +! if (do_aw.and.flx_form) then + if (flx_form) then + do k=1,kp1 + do i=ists,iens + lamdamax = maxval(lamdai(i,k,:)) + do while (lamdamax > zero) + loclamdamax = maxloc(lamdai(i,k,:),dim=1) + lamdaprod(i,k) = lamdaprod(i,k) * (one+lamdai(i,k,loclamdamax)) + sigmai(i,k,loclamdamax) = lamdai(i,k,loclamdamax) / lamdaprod(i,k) + sigma(i,k) = max(zero, min(one, sigma(i,k) + sigmai(i,k,loclamdamax))) + vverti(i,k,loclamdamax) = sigmai(i,k,loclamdamax) * wcv(i,k,loclamdamax) + + ! make this lamdai negative so it won't be counted again + lamdai(i,k,loclamdamax) = -lamdai(i,k,loclamdamax) + ! get new lamdamax + lamdamax = maxval(lamdai(i,k,:)) + enddo + ! restore original values of lamdai + lamdai(i,k,:) = abs(lamdai(i,k,:)) +! write(6,'(i2,14f7.4)') k,sigmai(i,k,:) + enddo + enddo + endif + +! the condensation terms - these come from the MSE and condensed water budgets for +! an entraining updraft + if(flx_form) then + DO CTP=1,NCTP ! loop over cloud types + dtcondtem(:,:) = zero + dqcondtem(:,:) = zero + dqprectem(:,:) = zero + dfrzprectem(:,:) = zero + dtfrztem(:,:) = zero + do i=ISTS,IENS + cbmfl = cbmfx(i,ctp) + kk = kt(i,ctp) ! cloud top index + if(cbmfl > zero) then ! this should avoid zero wcv in the denominator + kbi = kb(i) ! cloud base index + do k=kbi,kk ! loop from cloud base to cloud top + km1 = k - 1 + rhs_h = zero + rhs_q = zero + if(k > kbi) then +! tem = cbmfl * (one - sigma(i,k)) + tem = cbmfl * (one - 0.5*(sigma(i,k)+sigma(i,km1))) + tem1 = gcym(i,k,ctp) * (one - sigma(i,k)) + tem2 = gcym(i,km1,ctp) * (one - sigma(i,km1)) + rhs_h = cbmfl * (tem1*gchm(i,k,ctp) - (tem2*gchm(i,km1,ctp) & + + GDH(I,Km1)*(tem1-tem2)) ) + rhs_q = cbmfl * (tem1*(gcwm(i,k,ctp)-gcqm(i,k,ctp)) & + - (tem2*(gcwm(i,km1,ctp)-gcqm(i,km1,ctp)) & + + (GDw(I,Km1)-gdq(i,km1,1))*(tem1-tem2)) ) +! + dqcondtem(i,km1) = -rhs_q ! condensation + dqprectem(i,km1) = tem * (GPRCIZ(i,k,ctp) + GSNWIZ(i,k,ctp)) ! total precip production + dfrzprectem(i,km1) = tem * GSNWIZ(i,k,ctp) ! production of frozen precip + dtfrztem(i,km1) = rhs_h*oneocp ! heating due to freezing +! total temperature tendency due to in cloud microphysics + dtcondtem(i,km1) = - elocp * dqcondtem(i,km1) + dtfrztem(i,km1) + + endif ! if(k > kbi) then + enddo ! end of k=kbi,kk loop + + endif ! end of if(cbmfl > zero) + + +! get tendencies by difference of fluxes, sum over cloud type + + do k = 1,kk +! sum single cloud microphysical tendencies over all cloud types + condtermt(i,k) = condtermt(i,k) + dtcondtem(i,k) * delpinv(i,k) + condtermq(i,k) = condtermq(i,k) + dqcondtem(i,k) * delpinv(i,k) + prectermq(i,k) = prectermq(i,k) + dqprectem(i,k) * delpinv(i,k) + prectermfrz(i,k) = prectermfrz(i,k) + dfrzprectem(i,k) * delpinv(i,k) + frzterm(i,k) = frzterm(i,k) + dtfrztem(i,k) * delpinv(i,k) + +! if (lprnt .and. i == ipr) write(0,*)' k=',k,' trfluxtem=',trfluxtem(k+1,ntr),trfluxtem(k,ntr),& +! ' ctp=',ctp,' trfluxterm=',trfluxterm(i,k,ntr) + enddo + + enddo ! end of i loop + enddo ! end of nctp loop + endif +!downdraft sigma and mass-flux tendency terms are now put into +! the nctp+1 slot of the cloud-type dimensiond variables + + do k=1,kmax + do i=ists,iens + sigmad(i,k) = zero + enddo + enddo !> -# Call cumdwn() to compute cumulus downdraft and assocated melt, freeze !! and evaporation - CALL CUMDWN(IM , IJSDIM, KMAX , NTR , ntrq , & ! DD dimensions + CALL CUMDWN(IM, IJSDIM, KMAX, NTR, ntrq, nctp, & ! DD dimensions GTT , GTQ , GTU , GTV , & ! modified GMFLX , & ! modified updraft+downdraft flux GPRCP , GSNWP , GTEVP , GMDD , & ! output GPRCI , GSNWI , & ! input - GDH , GDW , GDQ , GDQ(1,1,iti) , & ! input + GDH , GDW , GDQ , GDQ(:,:,iti) , & ! input GDQS , GDS , GDHS , GDT , & ! input GDU , GDV , GDZ , & ! input - GDZM , FDQS , DELP , DELPI , & ! input + GDZM , FDQS , DELP , DELPInv , & ! input sigmad, do_aw , do_awdd, flx_form, & ! DDsigma input dtmelt, dtevap, dtsubl, & ! DDsigma input dtdwn , dqvdwn, dqldwn, dqidwn, & ! DDsigma input dtrdwn, & KB , KTMXT , ISTS , IENS ) ! input -! here we substitute the AW tendencies into tendencies to be passed out -! if (do_aw) then -! do k=1,kmax -! do i=ists,iens -! sigma(i,k) = sigma(i,k) + sigmad(i,k) -! enddo -! enddo + +! sigma = sigma + sigmad !> -# Call cumsbw() to compute cloud subsidence heating if (.not. flx_form) then @@ -1381,20 +1450,20 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions CALL CUMSBH(IM , IJSDIM, KMAX , NTR , ntrq , & !DD dimensions GTT , GTQ , & ! modified GTU , GTV , & ! modified - GDH , GDQ , GDQ(1,1,iti) , & ! input + GDH , GDQ , GDQ(:,:,iti) , & ! input GDU , GDV , & ! input - DELPI , GMFLX , GMFX0 , & ! input + DELPINV , GMFLX , GMFX0 , & ! input KTMXT , CPRES , kb, ISTS , IENS ) ! input else CALL CUMSBW(IM , IJSDIM, KMAX , & !DD dimensions GTU , GTV , & ! modified GDU , GDV , & ! input - DELPI , GMFLX , GMFX0 , & ! input + DELPINV , GMFLX , GMFX0 , & ! input KTMXT , CPRES , kb, ISTS , IENS ) ! input endif ! -! for now the following routines appear to be of no consequence to AW - DD +! for now the following routines appear to be of no consequence - DD ! if (.not. flx_form) then ! Tracer Updraft properties @@ -1411,20 +1480,20 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions GCYM , GCYT , GCQT , GCLT , GCIT , & ! input GTPRT , GTEVP , GTPRC0, & ! input KB , KBMX , KT , KTMX , KTMXT , & ! input - DELPI , OTSPT1, ISTS , IENS, & ! input + DELPInv , OTSPT1, ISTS , IENS, & ! input fscav , fswtr, nctp) ! ! Tracer Change due to Downdraft ! --------------- CALL CUMDNR(im ,IJSDIM , KMAX , NTR , & !DD dimensions GTQ , & ! modified - GDQ , GMDD , DELPI , & ! input + GDQ , GMDD , DELPInv , & ! input KTMXT , OTSPT1, ISTS , IENS ) ! input !! !! Tracer change due to Subsidence !! --------------- !! This will be done by cumsbh, now DD 20170907 -! CALL CUMSBR(im , IJSDIM, KMAX , NTR , & !DD dimensions +! CALL CUMSBR(im , IJSDIM, KMAX , NTR ,NCTP, & !DD dimensions ! GTQ , & ! modified ! GDQ , DELPI , & ! input ! GMFLX , KTMXT , OTSPT2, & ! input @@ -1447,6 +1516,60 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions !> -# Compute AW tendencies of T, ql and qi if(flx_form) then ! compute AW tendencies ! AW lump all heating together, compute qv term + +! sigma interpolated to the layer for condensation, etc. terms, precipitation + if(do_aw) then + do k=1,kmax + kp1 = k+1 + do i=1,ijsdim + fsigma(i,k) = one - half*(sigma(i,k)+sigma(i,kp1)) + enddo + enddo + else + do k=1,kmax+1 + do i=1,ijsdim + fsigma(i,k) = one + enddo + enddo + endif + +! AW adjustment of precip fluxes from downdraft model + if(do_aw) then + kp1 = kmax+1 + DO I=ISTS,IENS + GSNWP( I,kp1 ) = zero + GPRCP( I,kp1 ) = zero + ENDDO + tem1 = cpoemelt/grav + tem2 = cpoel/grav + tem3 = cpoesub/grav + DO K=KMAX,1,-1 + kp1 = k+1 + DO I=ISTS,IENS + tem = -dtmelt(i,k) * delp(i,k) * tem1 + teme = -dtevap(i,k) * delp(i,k) * tem2 + tems = -dtsubl(i,k) * delp(i,k) * tem3 + GSNWP(I,k) = GSNWP(I,kp1) + fsigma(i,k) * (GSNWI(i,k) - tem - tems) + GPRCP(I,k) = GPRCP(I,kp1) + fsigma(i,k) * (GPRCI(i,k) + tem - teme) + ENDDO + ENDDO + endif + + +! some of the above routines have set the tendencies and they need to be +! reinitialized, gtt not needed, but gtq needed Anning 5/25/2020 + do n=1,ntr + do k=1,kmax + do i=1,ijsdim + gtq(i,k,n) = zero + enddo + enddo + enddo +! do k=1,kmax +! do i=1,ijsdim +! gtt(i,k) = zero +! enddo +! enddo do k=1,kmax do i=ists,iens dqevap(i,k) = - dtevap(i,k)*cpoel - dtsubl(i,k)*cpoesub @@ -1454,25 +1577,70 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions dtsubl(i,k) = zero enddo enddo - do i=1,ijsdim - moistening_aw(i) = zero - enddo - tem2 = one / delta + + +! diabatic terms from updraft and downdraft models DO K=1,KMAX DO I=ISTS,IENS tem = frzterm(i,k)*cpoEMELT - prectermfrz(i,k) - gtt(i,k) = dtdwn(i,k) + sfluxterm(i,k) + condtermt(i,k) & - + dtmelt(i,k) + dtevap(i,k) - gtq(i,k,1) = dqvdwn(i,k) + qvfluxterm(i,k) + condtermq(i,k) & - + dqevap(i,k) - gtq(i,k,itl) = dqldwn(i,k) + qlfluxterm(i,k) - condtermq(i,k) & +! gtt(i,k) = gtt(i,k) + fsigma(i,k)*(dtmelt(i,k) + dtevap(i,k)) + condtermt(i,k) +! gtq(i,k,1) = gtq(i,k,1) + fsigma(i,k)*dqevap(i,k) + condtermq(i,k) +! gtq(i,k,itl) = gtq(i,k,itl) - (condtermq(i,k) + prectermq(i,k) + tem) +! gtq(i,k,iti) = gtq(i,k,iti) + tem + gtt(i,k) = dtdwn(i,k) + condtermt(i,k) & + + fsigma(i,k)*(dtmelt(i,k) + dtevap(i,k)) + gtq(i,k,1) = dqvdwn(i,k) + condtermq(i,k) & + + fsigma(i,k) * dqevap(i,k) + gtq(i,k,itl) = dqldwn(i,k) - condtermq(i,k) & - prectermq(i,k) - tem - gtq(i,k,iti) = dqidwn(i,k) + qifluxterm(i,k) + tem + gtq(i,k,iti) = dqidwn(i,k) + tem + ! detrainment terms get zeroed ! gtldet(i,k) = zero ! gtidet(i,k) = zero + ENDDO + ENDDO +!! flux tendencies - compute the vertical flux divergence + DO ctp =1,nctp + DO I=ISTS,IENS + cbmfl = cbmfx(i,ctp) + kk = kt(i,ctp) ! cloud top index + if(cbmfl > zero) then ! this should avoid zero wcv in the denominator + DO K=1,kk + kp1 = k+1 + gtt(i,k) = gtt(i,k) - (fsigma(i,kp1)*sfluxtem(i,kp1,ctp) & + - fsigma(i,k)*sfluxtem(i,k,ctp)) * delpinv(i,k) + gtq(i,k,1) = gtq(i,k,1) - (fsigma(i,kp1)*qvfluxtem(i,kp1,ctp) & + - fsigma(i,k)*qvfluxtem(i,k,ctp)) * delpinv(i,k) + gtq(i,k,itl) = gtq(i,k,itl) - (fsigma(i,kp1)*qlfluxtem(i,kp1,ctp) & + - fsigma(i,k)*qlfluxtem(i,k,ctp)) * delpinv(i,k) + gtq(i,k,iti) = gtq(i,k,iti) - (fsigma(i,kp1)*qifluxtem(i,kp1,ctp) & + - fsigma(i,k)*qifluxtem(i,k,ctp)) * delpinv(i,k) + ENDDO +! replace tracer tendency only if to be advected. + DO n = ntrq,NTR + if (OTSPT2(n)) then + DO K=1,kk + kp1 = k+1 + gtq(i,k,n) = - (fsigma(i,kp1)*trfluxtem(i,kp1,n,ctp) & + - fsigma(i,k)*trfluxtem(i,k,n,ctp)) * delpinv(i,k) + ENDDO + endif + ENDDO + end if + ENDDO + ENDDO +! if(kdt>4) stop 1000 + DO I=ISTS,IENS + moistening_aw(i) = zero + enddo + +! adjust tendencies that will lead to negative water mixing ratios + tem2 = one / delta + DO K=1,KMAX + DO I=ISTS,IENS tem1 = - gdq(i,k,itl)*tem2 if (gtq(i,k,itl) < tem1) then tem3 = gtq(i,k,itl) - tem1 @@ -1504,7 +1672,7 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions if (OTSPT2(n)) then DO K=1,KMAX DO I=ISTS,IENS - gtq(i,k,n) = dtrdwn(i,k,n) + trfluxterm(i,k,n) + gtq(i,k,n) = gtq(i,k,n) + dtrdwn(i,k,n) ENDDO ENDDO endif @@ -1597,46 +1765,74 @@ SUBROUTINE CS_CUMLUS (im , IJSDIM, KMAX , NTR , & !DD dimensions !> -# Ensures conservation of water. !In fact, no adjustment of the precip ! is occuring now which is a good sign! DD - if(flx_form .and. adjustp) then + if(flx_form) then DO I = ISTS, IENS if(gprcp(i,1)+gsnwp(i,1) > 1.e-12_kind_phys) then - moistening_aw(i) = - moistening_aw(i) / (gprcp(i,1)+gsnwp(i,1)) - else - moistening_aw(i) = 1.0 + moistening_aw(i) = -moistening_aw(i) / (gprcp(i,1)+gsnwp(i,1)) +! print*,'moistening_aw',moistening_aw(i) + gprcp(i,:) = gprcp(i,:) * moistening_aw(i) + gsnwp(i,:) = gsnwp(i,:) * moistening_aw(i) endif - ENDDO - do k=1,kmax - DO I = ISTS, IENS - gprcp(i,k) = max(0.0, gprcp(i,k) * moistening_aw(i)) - gsnwp(i,k) = max(0.0, gsnwp(i,k) * moistening_aw(i)) - ENDDO - enddo - + END DO endif + +! second method of determining sfc precip only +! if(flx_form) then +! DO I = ISTS, IENS +! pr_tot = zero +! pr_liq = zero +! pr_ice = zero +! do k = 1,kmax +! pr_tot = pr_tot - (gtq(i,k,1)+gtq(i,k,itl)+gtq(i,k,iti)) * delp(i,k) * gravi +! pr_ice = pr_ice + ( cp*gtt(i,k) + el*gtq(i,k,1) - emelt*gtq(i,k,iti) ) & +! * delp(i,k)*gravi +! enddo + !pr_ice = max( min(pr_tot, pr_ice / (emelt)),zero) +! pr_ice = pr_ice / emelt +! pr_liq = pr_tot - pr_ice +! END DO +! print *,'precip1',pr_tot*86400.,gprcp(1,1)*86400.,gsnwp(1,1)*86400. +! print *,'precip2',pr_tot*86400.,pr_liq*86400.,pr_ice*86400. +! endif + + DO K = 1, KMAX + DO I = ISTS, IENS + GPRCPF( I,K ) = 0.5*( GPRCP( I,K )+GPRCP( I,K+1 ) ) + GSNWPF( I,K ) = 0.5*( GSNWP( I,K )+GSNWP( I,K+1 ) ) + END DO + END DO + ! -! do i=ISTS,IENS -! GPRCC(I,1) = GPRCP(I,1) -! GSNWC(I ) = GSNWP(I,1) -! enddo - do k=1,kmax +! do i=ISTS,IENS +! GPRCC( I,1 ) = GPRCP( I,1 ) +! GSNWC( I ) = GSNWP( I,1 ) +! enddo + +! adjust sfc precip consistently with vertically integrated +! temperature and moisture tendencies + + do k=1,kmax+1 do i=ISTS,IENS GTPRP(I,k) = GPRCP(I,k) + GSNWP(I,k) enddo enddo ! !DD provide GFS with a separate downdraft mass flux - DO K=1,KMAX - DO I=ISTS,IENS - GMFX1(I,K) = GMFX0(I,K) - GMFLX(I,K) - ENDDO - ENDDO -! - if (flx_form) then - deallocate(sfluxterm, qvfluxterm, qlfluxterm, qifluxterm,& - condtermt, condtermq, frzterm, prectermq, & - prectermfrz, dtdwn, dqvdwn, dqldwn, & - dqidwn, trfluxterm, dtrdwn) - endif + if(do_aw) then + DO K = 1, KMAX+1 + DO I = ISTS, IENS + fsigma(i,k) = one - sigma(i,k) + GMFX0( I,K ) = GMFX0( I,K ) * fsigma(i,k) + GMFLX( I,K ) = GMFLX( I,K ) * fsigma(i,k) + END DO + END DO + endif + DO K = 1, KMAX+1 + DO I = ISTS, IENS + GMFX1( I,K ) = GMFX0( I,K ) - GMFLX( I,K ) + END DO + END DO + if (allocated(gprcc)) deallocate(gprcc) ! @@ -1748,28 +1944,6 @@ SUBROUTINE CUMBAS & ! cloud base ENDIF ENDDO ENDDO - DO K=KLCLB+1,KBMAX-1 - DO I=ISTS,IENS - spbl(i) = one - gdpm(i,k) * tx1(i) - IF (kb(i) > k .and. spbl(i) > spblmax) THEN - KB(I) = K - ENDIF - ENDDO - ENDDO -! DO K=KBMAX-1,KLCLB+1,-1 -! DO I=ISTS,IENS -! GAMX = FDQS(I,K) / (one+GAM(I,K)) * oneocp -! QSL(i) = GDQS(I,K) + GAMX * (GDH(I,KLCLB)-GDHS(I,K)) -! spbl(i) = one - gdpm(i,k) * tx1(i) -! IF (GDW(I,KLCLB) >= QSL(i) .and. spbl(i) >= spblcrit & -! .and. spbl(i) < spblcrit*6.0) THEN -! .and. spbl(i) < spblcrit*8.0) THEN -! KB(I) = K + KBOFS -! ENDIF -! ENDDO -! if(lprnt) write(0,*)' k=',k,' gdh1=',gdh(ipr,klclb),' gdhs=',gdhs(ipr,k),' kb=',kb(ipr) & -! ,' GDQS=',GDQS(ipr,k),' GDW=',GDW(ipr,KLCLB),' gdpm=',gdpm(ipr,k),' spbl=',spbl(ipr),' qsl=',qsl(ipr) -! ENDDO ENDIF ! do i=ists,iens @@ -1910,8 +2084,8 @@ SUBROUTINE CUMUP & !! in-cloud properties REAL(kind_phys) ACWF (IJSDIM) !< cloud work function REAL(kind_phys) GCLZ (IJSDIM, KMAX) !< cloud liquid water*eta REAL(kind_phys) GCIZ (IJSDIM, KMAX) !< cloud ice*eta - REAL(kind_phys) GPRCIZ(IJSDIM, KMAX) !< rain generation*eta - REAL(kind_phys) GSNWIZ(IJSDIM, KMAX) !< snow generation*eta + REAL(kind_phys) GPRCIZ(IJSDIM, KMAX+1) !< rain generation*eta + REAL(kind_phys) GSNWIZ(IJSDIM, KMAX+1) !< snow generation*eta REAL(kind_phys) GCYT (IJSDIM) !< norm. mass flux @top REAL(kind_phys) GCHT (IJSDIM) !< cloud top MSE*eta REAL(kind_phys) GCQT (IJSDIM) !< cloud top moisture*eta @@ -1924,7 +2098,7 @@ SUBROUTINE CUMUP & !! in-cloud properties REAL(kind_phys) GCwT (IJSDIM) !< cloud top v*eta INTEGER KT (IJSDIM) !< cloud top INTEGER KTMX !< max of cloud top - REAL(kind_phys) WCV (IJSDIM, KMAX) !< updraft velocity (half lev) !DD sigma make output + REAL(kind_phys) WCV (IJSDIM, KMAX+1) !< updraft velocity (half lev) !DD sigma make output ! ! [MODIFIED] REAL(kind_phys) GCYM (IJSDIM, KMAX) !< norm. mass flux @@ -1980,12 +2154,12 @@ SUBROUTINE CUMUP & !! in-cloud properties ! REAL(kind_phys) ELAR (IJSDIM, KMAX) !< entrainment rate REAL(kind_phys) ELAR !< entrainment rate at mid layer ! - REAL(kind_phys) GCHM (IJSDIM, KMAX) !< cloud MSE (half lev) - REAL(kind_phys) GCWM (IJSDIM, KMAX) !< cloud Qt (half lev) !DDsigmadiag - REAL(kind_phys) GCTM (IJSDIM, KMAX) !< cloud T (half lev) !DDsigmadiag make output - REAL(kind_phys) GCQM (IJSDIM, KMAX) !< cloud q (half lev) !DDsigmadiag make output - REAL(kind_phys) GCLM (IJSDIM, KMAX) !< cloud liquid ( half lev) - REAL(kind_phys) GCIM (IJSDIM, KMAX) !< cloud ice (half lev) + REAL(kind_phys) GCHM (IJSDIM, KMAX+1) !< cloud MSE (half lev) + REAL(kind_phys) GCWM (IJSDIM, KMAX+1) !< cloud Qt (half lev) !DDsigmadiag + REAL(kind_phys) GCTM (IJSDIM, KMAX+1) !< cloud T (half lev) !DDsigmadiag make output + REAL(kind_phys) GCQM (IJSDIM, KMAX+1) !< cloud q (half lev) !DDsigmadiag make output + REAL(kind_phys) GCLM (IJSDIM, KMAX+1) !< cloud liquid ( half lev) + REAL(kind_phys) GCIM (IJSDIM, KMAX+1) !< cloud ice (half lev) REAL(kind_phys) GCUM (IJSDIM, KMAX) !< cloud U (half lev) REAL(kind_phys) GCVM (IJSDIM, KMAX) !< cloud V (half lev) REAL(kind_phys) GCtrM (IJSDIM, KMAX,ntrq:ntr) !< cloud tracer (half lev) @@ -2021,8 +2195,9 @@ SUBROUTINE CUMUP & !! in-cloud properties ! REAL(kind_phys) :: WCCRT = zero !m REAL(kind_phys) :: WCCRT = 0.01 REAL(kind_phys) :: WCCRT = 1.0e-6_kind_phys, wvcrt=1.0e-3_kind_phys - REAL(kind_phys) :: TSICE = 268.15_kind_phys ! compatible with macrop_driver - REAL(kind_phys) :: TWICE = 238.15_kind_phys ! compatible with macrop_driver + REAL(kind_phys) :: TSICE = 273.15_kind_phys ! compatible with macrop_driver + REAL(kind_phys) :: TWICE = 233.15_kind_phys ! compatible with macrop_driver + REAL(kind_phys) :: c1t ! REAL(kind_phys) :: wfn_neg = 0.1 REAL(kind_phys) :: wfn_neg = 0.15 @@ -2033,10 +2208,15 @@ SUBROUTINE CUMUP & !! in-cloud properties REAL(kind_phys) :: esat, tem ! REAL(kind_phys) :: esat, tem, rhs_h, rhs_q ! +! [INTERNAL FUNC] + REAL(kind_phys) FPREC ! precipitation ratio in condensate + REAL(kind_phys) FRICE ! ice ratio in cloud water REAL(kind_phys) Z ! altitude REAL(kind_phys) ZH ! scale height REAL(kind_phys) T ! temperature ! + FPREC(Z,ZH) = MIN(MAX(one-EXP(-(Z-PRECZ0)/ZH), zero), one) + FRICE(T) = MIN(MAX((TSICE-T)/(TSICE-TWICE), zero), one) ! ! Note: iteration is not made to diagnose cloud ice for simplicity ! @@ -2052,14 +2232,25 @@ SUBROUTINE CUMUP & !! in-cloud properties GCVT (I) = zero GCwT (I) = zero enddo + do k=1,kmax+1 + do i=ists,iens + GPRCIZ(I,k) = zero + GSNWIZ(I,k) = zero + enddo + enddo + do k=1,kmax + do i=ists,iens + WCV (I,k) = unset_kind_phys + GCLM (I,k) = unset_kind_phys + GCIM (I,k) = unset_kind_phys + enddo + enddo do k=1,kmax do i=ists,iens ACWFK (I,k) = unset_kind_phys ACWFN (I,k) = unset_kind_phys GCLZ (I,k) = zero GCIZ (I,k) = zero - GPRCIZ(I,k) = zero - GSNWIZ(I,k) = zero ! GCHMZ (I,k) = zero GCWMZ (I,k) = zero @@ -2070,15 +2261,12 @@ SUBROUTINE CUMUP & !! in-cloud properties ! BUOY (I,k) = unset_kind_phys BUOYM (I,k) = unset_kind_phys - WCV (I,k) = unset_kind_phys GCY (I,k) = unset_kind_phys ! GCHM (I,k) = unset_kind_phys GCWM (I,k) = unset_kind_phys GCTM (I,k) = unset_kind_phys GCQM (I,k) = unset_kind_phys - GCLM (I,k) = unset_kind_phys - GCIM (I,k) = unset_kind_phys GCUM (I,k) = unset_kind_phys GCVM (I,k) = unset_kind_phys enddo @@ -2199,13 +2387,24 @@ SUBROUTINE CUMUP & !! in-cloud properties FDQSM = GDQSM * tem * (fact1 + fact2*tem) ! calculate d(qs)/dT CPGMI = one / (CP + EL*FDQSM) - PRCZH = PRECZH * MIN(GDZTR(I)*ZTREFI, one) - PRECR = FPREC(GDZM(I,K)-GDZMKB(I), PRCZH ) ! wrk = one / GCYM(I,K) DCTM = (GCHMZ(I,K)*wrk - GDHSM) * CPGMI GCQMZ(i) = min((GDQSM+FDQSM*DCTM)*GCYM(I,K), GCWMZ(I,K)) - GTPRMZ(I,K) = PRECR * (GCWMZ(I,K)-GCQMZ(i)) + if(PRECZH > zero) then + PRCZH = PRECZH * MIN(GDZTR(I)*ZTREFI, one) + PRECR = FPREC(GDZM(I,K)-GDZMKB(I), PRCZH ) + GTPRMZ(I,K) = PRECR * (GCWMZ(I,K)-GCQMZ(i)) + else + DELC=GDZ(I,K)-GDZ(I,KM1) + if(gdtm(i,k)>TSICE) then + c1t=c0t*delc + else + c1t=c0t*exp(d0t*(gdtm(i,k)-TSICE))*delc + end if + c1t=min(c1t, one) + GTPRMZ(I,K) = c1t * (GCWMZ(I,K)-GCQMZ(i)) + end if GTPRMZ(I,K) = MAX(GTPRMZ(I,K), GTPRMZ(I,KM1)) GCCMZ = GCWMZ(I,K) - GCQMZ(i) - GTPRMZ(I,K ) DELC = MIN(GCCMZ, zero) @@ -2274,7 +2473,11 @@ SUBROUTINE CUMUP & !! in-cloud properties wrk = one / GCYM(I,K) DCTM = (GCHMZ(I,K)*wrk - GDHSM) * CPGMI GCQMZ(i) = min((GDQSM+FDQSM*DCTM)*GCYM(I,K), GCWMZ(I,K)) - GTPRMZ(I,K) = PRECR * (GCWMZ(I,K)-GCQMZ(i)) + if(PRECZH > zero) then + GTPRMZ(I,K) = PRECR * (GCWMZ(I,K)-GCQMZ(i)) + else + GTPRMZ(I,K) = c1t * (GCWMZ(I,K)-GCQMZ(i)) + end if GTPRMZ(I,K) = MAX(GTPRMZ(I,K), GTPRMZ(I,KM1)) GCCMZ = GCWMZ(I,K) - GCQMZ(i) - GTPRMZ(I,K) DELC = MIN(GCCMZ, zero) @@ -2399,8 +2602,19 @@ SUBROUTINE CUMUP & !! in-cloud properties wrk = one / gcyt(i) DCT = (GCHT(I)*wrk - GDHS(I,K)) / (CP*(one + GAM(I,K))) GCQT(I) = min((GDQS(I,K) + FDQS(I,K)*DCT) * GCYT(I), GCWT(i)) - PRCZH = PRECZH * MIN(GDZTR(I)*ZTREFI, one) - GTPRT(I) = FPREC(GDZ(I,K)-GDZMKB(I), PRCZH) * (GCWT(i)-GCQT(I)) + if(PRECZH > zero) then + PRCZH = PRECZH * MIN(GDZTR(I)*ZTREFI, one) + GTPRT(I) = FPREC(GDZ(I,K)-GDZMKB(I), PRCZH) * (GCWT(i)-GCQT(I)) + else + DELC=GDZ(I,K)-GDZ(I,K-1) + if(gdtm(i,k)>TSICE) then + c1t=c0t*delc + else + c1t=c0t*exp(d0t*(gdtm(i,k)-TSICE))*delc + end if + c1t=min(c1t, one) + GTPRT(I) = c1t * (GCWT(i)-GCQT(I)) + end if GTPRT(I) = MAX(GTPRT(I), GTPRMZ(I,K)) GCCT = GCWT(i) - GCQT(I) - GTPRT(I) DELC = MIN(GCCT, zero) @@ -2503,24 +2717,6 @@ SUBROUTINE CUMUP & !! in-cloud properties ! ! WRITE( CTNUM, '(I2.2)' ) CTP ! - -contains - - pure function FPREC(Z,ZH) - implicit none - real(kind_phys), intent(in) :: Z - real(kind_phys), intent(in) :: ZH - real(kind_phys) :: FPREC - FPREC = MIN(MAX(one-EXP(-(Z-PRECZ0)/ZH), zero), one) - end function FPREC - - pure function FRICE(T) - implicit none - real(kind_phys), intent(in) :: T - real(kind_phys) :: FRICE - FRICE = MIN(MAX((TSICE-T)/(TSICE-TWICE), zero), one) - end function FRICE - END SUBROUTINE CUMUP !*********************************************************************** !>\ingroup cs_scheme @@ -2562,8 +2758,8 @@ SUBROUTINE CUMBMX & !! cloud base mass flux ! [INTERNAL PARAM] REAL(kind_phys) :: FMAX = 1.5e-2_kind_phys ! maximum flux ! REAL(kind_phys) :: RHMCRT = zero ! critical val. of cloud mean RH -! REAL(kind_phys) :: RHMCRT = 0.25_kind_phys ! critical val. of cloud mean RH - REAL(kind_phys) :: RHMCRT = 0.50_kind_phys ! critical val. of cloud mean RH + REAL(kind_phys) :: RHMCRT = 0.25_kind_phys ! critical val. of cloud mean RH +! REAL(kind_phys) :: RHMCRT = 0.50_kind_phys ! critical val. of cloud mean RH REAL(kind_phys) :: ALP1 = zero REAL(kind_phys) :: TAUD = 1.e3_kind_phys ! REAL(kind_phys) :: TAUD = 6.e2_kind_phys @@ -2624,7 +2820,7 @@ SUBROUTINE CUMFLX & !! cloud mass flux INTEGER, INTENT(IN) :: IJSDIM, KMAX, IM !! DD, for GFS, pass in ! ! [OUTPUT] - REAL(kind_phys) GMFLX (IJSDIM, KMAX) !< mass flux + REAL(kind_phys) GMFLX (IJSDIM, KMAX+1) !< mass flux REAL(kind_phys) CMDET (IJSDIM, KMAX) !< detrainment mass flux REAL(kind_phys) GPRCI (IJSDIM, KMAX) !< rainfall generation REAL(kind_phys) GSNWI (IJSDIM, KMAX) !< snowfall generation @@ -2636,8 +2832,8 @@ SUBROUTINE CUMFLX & !! cloud mass flux REAL(kind_phys) CBMFX (IJSDIM) !< cloud base mass flux REAL(kind_phys) GCYM (IJSDIM, KMAX) !< normalized mass flux REAL(kind_phys) GCYT (IJSDIM) !< detraining mass flux - REAL(kind_phys) GPRCIZ(IJSDIM, KMAX) !< precipitation/M - REAL(kind_phys) GSNWIZ(IJSDIM, KMAX) !< snowfall/M + REAL(kind_phys) GPRCIZ(IJSDIM, KMAX+1) !< precipitation/M + REAL(kind_phys) GSNWIZ(IJSDIM, KMAX+1) !< snowfall/M REAL(kind_phys) GTPRT (IJSDIM) !< rain+snow @top REAL(kind_phys) GCLZ (IJSDIM, KMAX) !< cloud liquid/M REAL(kind_phys) GCIZ (IJSDIM, KMAX) !< cloud ice/M @@ -2773,8 +2969,8 @@ SUBROUTINE CUMSBH & !! adiabat. descent REAL(kind_phys) GDU (IJSDIM, KMAX) REAL(kind_phys) GDV (IJSDIM, KMAX) REAL(kind_phys) DELPI (IJSDIM, KMAX) - REAL(kind_phys) GMFLX (IJSDIM, KMAX) !< mass flux (updraft+downdraft) - REAL(kind_phys) GMFX0 (IJSDIM, KMAX) !< mass flux (updraft only) + REAL(kind_phys) GMFLX (IJSDIM, KMAX+1) !< mass flux (updraft+downdraft) + REAL(kind_phys) GMFX0 (IJSDIM, KMAX+1) !< mass flux (updraft only) INTEGER KB(IJSDIM) !< cloud base index - negative means no convection INTEGER KTMX REAL(kind_phys) CPRES !< pressure factor for cumulus friction @@ -2890,8 +3086,8 @@ SUBROUTINE CUMSBW & !! adiabat. descent REAL(kind_phys) GDU (IJSDIM, KMAX) REAL(kind_phys) GDV (IJSDIM, KMAX) REAL(kind_phys) DELPI (IJSDIM, KMAX) - REAL(kind_phys) GMFLX (IJSDIM, KMAX) !< mass flux (updraft+downdraft) - REAL(kind_phys) GMFX0 (IJSDIM, KMAX) !< mass flux (updraft only) + REAL(kind_phys) GMFLX (IJSDIM, KMAX+1) !< mass flux (updraft+downdraft) + REAL(kind_phys) GMFX0 (IJSDIM, KMAX+1) !< mass flux (updraft only) INTEGER KB(IJSDIM) !< cloud base index - negative means no convection INTEGER KTMX, ISTS, IENS REAL(kind_phys) CPRES !< pressure factor for cumulus friction @@ -2942,7 +3138,7 @@ END SUBROUTINE CUMSBW !>\ingroup cs_scheme !! This subroution calculates freeze, melt and evaporation in cumulus downdraft. SUBROUTINE CUMDWN & ! Freeze & Melt & Evaporation - ( IM , IJSDIM, KMAX , NTR , ntrq, & !DD dimensions + ( IM , IJSDIM, KMAX , NTR,ntrq,nctp, & !DD dimensions GTT , GTQ , GTU , GTV , & ! modified GMFLX , & ! modified GPRCP , GSNWP , GTEVP , GMDD , & ! output @@ -2962,7 +3158,7 @@ SUBROUTINE CUMDWN & ! Freeze & Melt & Evaporation ! IMPLICIT NONE - INTEGER, INTENT(IN) :: IM, IJSDIM, KMAX, NTR, ntrq ! DD, for GFS, pass in + INTEGER, INTENT(IN) :: IM, IJSDIM, KMAX, NTR , ntrq, nctp !! DD, for GFS, pass in logical, intent(in) :: do_aw, do_awdd, flx_form ! ! [MODIFY] @@ -2970,13 +3166,13 @@ SUBROUTINE CUMDWN & ! Freeze & Melt & Evaporation REAL(kind_phys) GTQ (IJSDIM, KMAX, NTR) !< Moisture etc tendency REAL(kind_phys) GTU (IJSDIM, KMAX) !< u tendency REAL(kind_phys) GTV (IJSDIM, KMAX) !< v tendency - REAL(kind_phys) GMFLX (IJSDIM, KMAX) !< mass flux + REAL(kind_phys) GMFLX (IJSDIM, KMAX+1) !< mass flux ! ! [OUTPUT] - REAL(kind_phys) GPRCP (IJSDIM, KMAX) !< rainfall flux - REAL(kind_phys) GSNWP (IJSDIM, KMAX) !< snowfall flux + REAL(kind_phys) GPRCP (IJSDIM, KMAX+1) !< rainfall flux + REAL(kind_phys) GSNWP (IJSDIM, KMAX+1) !< snowfall flux REAL(kind_phys) GTEVP (IJSDIM, KMAX) !< evaporation+sublimation - REAL(kind_phys) GMDD (IJSDIM, KMAX) !< downdraft mass flux + REAL(kind_phys) GMDD (IJSDIM, KMAX+1) !< downdraft mass flux !AW microphysical tendencies REAL(kind_phys) gtmelt (IJSDIM, KMAX) !< t tendency ice-liq @@ -2988,8 +3184,6 @@ SUBROUTINE CUMDWN & ! Freeze & Melt & Evaporation REAL(kind_phys) dqldwn (IJSDIM, KMAX) !< ql tendency downdraft detrainment REAL(kind_phys) dqidwn (IJSDIM, KMAX) !< qi tendency downdraft detrainment REAL(kind_phys) dtrdwn (IJSDIM, KMAX, ntrq:ntr) !< tracer tendency downdraft detrainment -! AW downdraft area fraction (assumed zero for now) - REAL(kind_phys) sigmad (IJSDIM,KMAX) !< DDsigma cloud downdraft area fraction ! [INPUT] REAL(kind_phys) GPRCI (IJSDIM, KMAX) !< rainfall generation @@ -3011,6 +3205,8 @@ SUBROUTINE CUMDWN & ! Freeze & Melt & Evaporation REAL(kind_phys) DELPI (IJSDIM, KMAX) INTEGER KB (IJSDIM) INTEGER KTMX, ISTS, IENS + REAL(kind_phys) sigmad (IM,KMAX+1) !< DDsigma cloud downdraft area fraction + ! ! [INTERNAL WORK] ! Note: Some variables have 3-dimensions for the purpose of budget check. @@ -3031,27 +3227,33 @@ SUBROUTINE CUMDWN & ! Freeze & Melt & Evaporation ! profiles of downdraft variables for AW flux tendencies REAL(kind_phys) GCdseD(ISTS:IENS, KMAX) !< downdraft dse REAL(kind_phys) GCqvD (ISTS:IENS, KMAX) !< downdraft qv -! REAL(kind_phys) GCqlD (ISTS:IENS, KMAX) !< downdraft ql -! REAL(kind_phys) GCqiD (ISTS:IENS, KMAX) !< downdraft qi + REAL(kind_phys) GCqlD (ISTS:IENS, KMAX) !< downdraft ql + REAL(kind_phys) GCqiD (ISTS:IENS, KMAX) !< downdraft qi REAL(kind_phys) GCtrD (ISTS:IENS, ntrq:ntr) !< downdraft tracer REAL(kind_phys) GCUD (ISTS:IENS) !< downdraft u REAL(kind_phys) GCVD (ISTS:IENS) !< downdraft v REAL(kind_phys) FSNOW (ISTS:IENS) REAL(kind_phys) GMDDD (ISTS:IENS) - - REAL(kind_phys) GDTW, GCHX, GCTX, GCQSX, GTPRP, EVSU, GTEVE, LVIC, & - DQW, DTW, GDQW, DZ, GCSD, FDET, GDHI, GMDDX, & - GMDDMX, GCHDX, GCWDX, GCUDD, GCVDD, GTHCI, GTQVCI, & - wrk, wrk1, wrk2, wrk3, wrk4, tx1, & - WMX, HMX, DDWMX, DDHMX, dp_above, dp_below, fsigma, & - fmelt, fevp, wrkn, gctrdd(ntrq:ntr) - + INTEGER I, K + REAL(kind_phys) GDTW + REAL(kind_phys) GCHX, GCTX, GCQSX, GTPRP, EVSU, GTEVE, LVIC + REAL(kind_phys) DQW, DTW, GDQW, DZ, GCSD, FDET, GDHI + REAL(kind_phys) GMDDX, GMDDMX + REAL(kind_phys) GCHDX, GCWDX + REAL(kind_phys) GCUDD, GCVDD + REAL(kind_phys) GTHCI, GTQVCI, GTQLCI, GTQICI !M REAL(kind_phys) GTHCI, GTQVCI, GTQLCI, GTQICI, GTUCI, GTVCI + real(kind_phys) wrk, fmelt, fevp, gctrdd(ntrq:ntr) !DD#ifdef OPT_CUMBGT -! Water, energy, downdraft water and downdraft energy budgets -! REAL(kind_phys), dimension(ISTS:IENS) :: WBGT, HBGT, DDWBGT, DDHBGT - integer ij, i, k, kp1, n + REAL(kind_phys) WBGT ( ISTS:IENS ) !! water budget + REAL(kind_phys) HBGT ( ISTS:IENS ) !! energy budget + REAL(kind_phys) DDWBGT( ISTS:IENS ) !! downdraft water budget + REAL(kind_phys) DDHBGT( ISTS:IENS ) !! downdraft energy budget + REAL(kind_phys) WMX, HMX, DDWMX, DDHMX, tx1, wrk1, wrk2, wrk3, wrk4, wrkn + REAL(kind_phys) dp_above, dp_below + real(kind_phys) fsigma + integer ij, n, kp1 !DD#endif ! ! [INTERNAL PARM] @@ -3109,46 +3311,23 @@ SUBROUTINE CUMDWN & ! Freeze & Melt & Evaporation gtsubl(I,k) = zero enddo enddo -! testing on oct 17 2016 - if (flx_form) then - if (.not. do_awdd) then - do k=1,kmax - do i=ists,iens - if (kb(i) > 0) then - dtdwn (i,k) = gtt(i,k) - dqvdwn(i,k) = gtq(i,k,1) - dqldwn(i,k) = gtq(i,k,itl) - dqidwn(i,k) = gtq(i,k,iti) - endif - enddo - enddo - do n=ntrq,ntr - do k=1,kmax - do i=ists,iens - if (kb(i) > 0) then - dtrdwn(i,k,n) = gtq(i,k,n) - endif - enddo - enddo - enddo - else - do k=1,kmax - do i=ists,iens - dtdwn (I,k) = zero - dqvdwn(I,k) = zero - dqldwn(I,k) = zero - dqidwn(I,k) = zero - enddo - enddo - do n=ntrq,ntr - do k=1,kmax - do i=ists,iens - dtrdwn(i,k,n) = zero - enddo - enddo - enddo - endif - endif + +! These are zeroed by the calling routine, cs_cumlus +! do k=1,kmax +! do i=ists,iens +! dtdwn (I,k) = zero +! dqvdwn(I,k) = zero +! dqldwn(I,k) = zero +! dqidwn(I,k) = zero +! enddo +! enddo +! do n=ntrq,ntr +! do k=1,kmax +! do i=ists,iens +! dtrdwn(i,k,n) = zero +! enddo +! enddo +! enddo ! do i=ists,iens GCHD(I) = zero @@ -3178,20 +3357,19 @@ SUBROUTINE CUMDWN & ! Freeze & Melt & Evaporation LVIC = ELocp + EMELTocp*FSNOW(I) GDTW = GDT(I,K) - LVIC*(GDQS(I,K) - GDQ(I,K,1)) & / (one + LVIC*FDQS(I,K)) + + DZ = GDZM(I,KP1) - GDZM(I,K) + FMELT = (one + FTMLT*(GDTW - TWSNOW)) & + * (one - TANH(GMFLX(I,KP1)/GMFLXC)) & + * (one - TANH(VTERMS*MELTAU/DZ)) IF (GDTW < TWSNOW) THEN - GSNWP(I,K) = GSNWP(I,KP1) + GPRCI(I,K) + GSNWI(I,K) - GTTEV(I,K) = EMELToCP * GPRCI(I,K) * DELPI(I,K) - SNMLT(I,K) = -GPRCI(I,K) + SNMLT(I,K) = GPRCP(I,KP1)*min(max(FMELT, one), zero) ELSE - DZ = GDZM(I,KP1) - GDZM(I,K) - FMELT = (one + FTMLT*(GDTW - TWSNOW)) & - * (one - TANH(GMFLX(I,KP1)/GMFLXC)) & - * (one - TANH(VTERMS*MELTAU/DZ)) SNMLT(I,K) = GSNWP(I,KP1)*max(min(FMELT, one), zero) - GSNWP(I,K) = GSNWP(I,KP1)+GSNWI(I,K) - SNMLT(I,K) - GPRCP(I,K) = GPRCP(I,KP1)+GPRCI(I,K) + SNMLT(I,K) - GTTEV(I,K) = -EMELToCP * SNMLT(I,K) * DELPI(I,K) ENDIF + GSNWP(I,K) = GSNWP(I,KP1)+GSNWI(I,K) - SNMLT(I,K) + GPRCP(I,K) = GPRCP(I,KP1)+GPRCI(I,K) + SNMLT(I,K) + GTTEV(I,K) = -EMELToCP * SNMLT(I,K) * DELPI(I,K) !DD heating rate due to precip melting for AW gtmelt(i,k) = gtmelt(i,k) + GTTEV(I,K) endif @@ -3350,8 +3528,15 @@ SUBROUTINE CUMDWN & ! Freeze & Melt & Evaporation GTQ(I,K,1) = GTQ(I,K,1) + GTQEV(I,K) ! GMFLX(I,K) = GMFLX(I,K) - GMDD(I,K) + endif + ENDDO ! end of i loop + ENDDO ! end of k loop ! AW tendencies due to vertical divergence of eddy fluxes + DO K=2,KTMX + kp1 = min(k+1,kmax) + DO I=ISTS,IENS + if (kb(i) > 0) then if (k > 1 .and. flx_form) then fsigma = one - sigmad(i,kp1) dp_below = wrk * (one - sigmad(i,k)) @@ -3381,28 +3566,6 @@ SUBROUTINE CUMDWN & ! Freeze & Melt & Evaporation endif ENDDO ! end of i loop ENDDO ! end of k loop -! - if (.not. do_awdd .and. flx_form) then - do k=1,kmax - do i=ists,iens - if (kb(i) > 0) then - dtdwn(i,k) = gtt(i,k) - dtdwn(i,k) - dqvdwn(i,k) = gtq(i,k,1) - dqvdwn(i,k) - dqldwn(i,k) = gtq(i,k,itl) - dqldwn(i,k) - dqidwn(i,k) = gtq(i,k,iti) - dqidwn(i,k) - endif - enddo - enddo - do n=ntrq,ntr - do k=1,kmax - do i=ists,iens - if (kb(i) > 0) then - dtrdwn(i,k,n) = gtq(i,k,n) - dtrdwn(i,k,n) - endif - enddo - enddo - enddo - endif ! END SUBROUTINE CUMDWN !*********************************************************************** @@ -3428,22 +3591,28 @@ SUBROUTINE CUMCLD & !! cloudiness REAL(kind_phys) FLIQC (IJSDIM, KMAX) !< liquid ratio in cumulus ! ! [INPUT] - REAL(kind_phys) GMFLX (IJSDIM, KMAX) ! cumulus mass flux + REAL(kind_phys) GMFLX (IJSDIM, KMAX+1) ! cumulus mass flux INTEGER KTMX INTEGER ISTS, IENS ! ! [WORK] INTEGER I, K REAL(kind_phys) CUMF, QC, wrk + LOGICAL, SAVE :: OFIRST = .TRUE. ! ! [INTERNAL PARAM] - REAL(kind_phys), parameter :: CMFMIN = 2.e-3_kind_phys, &!< Mc->cloudiness - CMFMAX = 3.e-1_kind_phys, &!< Mc->cloudiness - CLMIN = 1.e-3_kind_phys, &!< cloudiness Min. - CLMAX = 0.1_kind_phys, &!< cloudiness Max. - FACLW = 0.1_kind_phys, &!< Mc->CLW - FACLF = (CLMAX-CLMIN)/LOG(CMFMAX/CMFMIN) -! + REAL(kind_phys) :: FACLW = 0.1_kind_phys !> Mc->CLW + REAL(kind_phys) :: CMFMIN = 2.e-3_kind_phys !> Mc->cloudiness + REAL(kind_phys) :: CMFMAX = 3.e-1_kind_phys !> Mc->cloudiness + REAL(kind_phys) :: CLMIN = 1.e-3_kind_phys !> cloudiness Min. + REAL(kind_phys) :: CLMAX = 0.1_kind_phys !> cloudiness Max. + REAL(kind_phys), SAVE :: FACLF +! + IF ( OFIRST ) THEN + FACLF = (CLMAX-CLMIN)/LOG(CMFMAX/CMFMIN) + OFIRST = .FALSE. + END IF + CUMFRC(ISTS:IENS) = zero DO K=1,KTMX DO I=ISTS,IENS @@ -3668,26 +3837,28 @@ END SUBROUTINE CUMDNR !*********************************************************************** !>\ingroup cs_scheme SUBROUTINE CUMSBR & !! Tracer Subsidence - ( IM , IJSDIM, KMAX , NTR , & !DD dimensions + ( IM , IJSDIM, KMAX, NTR, NCTP, & !DD dimensions GTR , & ! modified - GDR , DELPI , & ! input + GDR , DELP , & ! input GMFLX , KTMX , OTSPT , & ! input + sigmai , sigma , & !DDsigma input ISTS, IENS ) ! input ! IMPLICIT NONE - INTEGER, INTENT(IN) :: IM, IJSDIM, KMAX, NTR !! DD, for GFS, pass in + INTEGER, INTENT(IN) :: IM, IJSDIM, KMAX, NTR, nctp !! DD, for GFS, pass in ! ! [MODIFY] REAL(kind_phys) GTR (IJSDIM, KMAX, NTR) !! tracer tendency ! ! [INPUT] REAL(kind_phys) GDR (IJSDIM, KMAX, NTR) !! tracer - REAL(kind_phys) DELPI (IJSDIM, KMAX) - REAL(kind_phys) GMFLX (IJSDIM, KMAX) !! mass flux + REAL(kind_phys) DELP (IJSDIM, KMAX) + REAL(kind_phys) GMFLX (IJSDIM, KMAX+1) !! mass flux INTEGER KTMX LOGICAL OTSPT (NTR) !! tracer transport on/off INTEGER ISTS, IENS + REAL(kind_phys) sigmai (IM,KMAX+1,NCTP), sigma(IM,KMAX+1) !!DDsigma cloud updraft fraction ! ! [INTERNAL WORK] INTEGER I, K, KM, KP, LT @@ -3703,14 +3874,14 @@ SUBROUTINE CUMSBR & !! Tracer Subsidence KM = MAX(K-1, 1) KP = MIN(K+1, KMAX) DO I=ISTS,IENS - SBR0 = GMFLX(I,KP) * (GDR(I,KP,LT) - GDR(I,K,LT)) - SBR1 = GMFLX(I,K) * (GDR(I,K,LT) - GDR(I,KM,LT)) - IF (GMFLX(I,K) > GMFLX(I,KP)) THEN + SBR0 = GMFLX(I,K+1) * (GDR(I,KP,LT) - GDR(I,K,LT)) + SBR1 = GMFLX(I,K) * (GDR(I,K,LT) - GDR(I,KM,LT)) + IF (GMFLX(I,K) > GMFLX(I,K+1)) THEN FX1 = half ELSE FX1 = zero END IF - GTR(I,K,LT) = GTR(I,K,LT) + DELPI(I,K) & + GTR(I,K,LT) = GTR(I,K,LT) + GRAV/DELP(I,K) & * ((one-FX(I))*SBR0 + FX1*SBR1) FX(I) = FX1 ENDDO @@ -3815,14 +3986,14 @@ END SUBROUTINE CUMFXR !********************************************************************* !>\ingroup cs_scheme SUBROUTINE CUMFXR1 & ! Tracer mass fixer - ( IM , IJSDIM, KMAX , & !DD dimensions + ( IM , IJSDIM, KMAX ,nctp, & !DD dimensions GTR , & ! modified GDR , DELP , DELTA , KTMX , IMFXR , & ! input ISTS , IENS ) ! input ! IMPLICIT NONE - INTEGER, INTENT(IN) :: IM, IJSDIM, KMAX ! DD, for GFS, pass in + INTEGER, INTENT(IN) :: IM, IJSDIM, KMAX, nctp !! DD, for GFS, pass in ! ! [MODIFY] REAL(kind_phys) GTR (IJSDIM, KMAX) ! tracer tendency diff --git a/physics/CONV/Chikira_Sugiyama/cs_conv.meta b/physics/CONV/Chikira_Sugiyama/cs_conv.meta index 49e460ed6..d75ab1006 100644 --- a/physics/CONV/Chikira_Sugiyama/cs_conv.meta +++ b/physics/CONV/Chikira_Sugiyama/cs_conv.meta @@ -258,7 +258,7 @@ standard_name = convective_updraft_area_fraction_at_model_interfaces long_name = convective updraft area fraction at model interfaces units = frac - dimensions = (horizontal_loop_extent,vertical_layer_dimension) + dimensions = (horizontal_loop_extent,vertical_interface_dimension) type = real kind = kind_phys intent = out diff --git a/physics/CONV/Chikira_Sugiyama/cs_conv_post.meta b/physics/CONV/Chikira_Sugiyama/cs_conv_post.meta index 75de3fca7..5877c051b 100644 --- a/physics/CONV/Chikira_Sugiyama/cs_conv_post.meta +++ b/physics/CONV/Chikira_Sugiyama/cs_conv_post.meta @@ -33,7 +33,7 @@ standard_name = convective_updraft_area_fraction_at_model_interfaces long_name = convective updraft area fraction at model interfaces units = frac - dimensions = (horizontal_loop_extent,vertical_layer_dimension) + dimensions = (horizontal_loop_extent,vertical_interface_dimension) type = real kind = kind_phys intent = in diff --git a/physics/Interstitials/UFS_SCM_NEPTUNE/GFS_surface_composites_pre.F90 b/physics/Interstitials/UFS_SCM_NEPTUNE/GFS_surface_composites_pre.F90 index fd16dea59..d36a86721 100644 --- a/physics/Interstitials/UFS_SCM_NEPTUNE/GFS_surface_composites_pre.F90 +++ b/physics/Interstitials/UFS_SCM_NEPTUNE/GFS_surface_composites_pre.F90 @@ -42,9 +42,9 @@ subroutine GFS_surface_composites_pre_run (im, lkm, frac_grid, iopt_lake, iopt_l real(kind=kind_phys), dimension(:), intent(in ) :: landfrac, lakefrac, lakedepth, oceanfrac real(kind=kind_phys), dimension(:), intent(inout) :: cice, hice real(kind=kind_phys), dimension(:), intent( out) :: frland - real(kind=kind_phys), dimension(:), intent(in ) :: snowd, tprcp, uustar, weasd, qss + real(kind=kind_phys), dimension(:), intent(in ) :: snowd, tprcp, uustar, weasd, qss, tisfc - real(kind=kind_phys), dimension(:), intent(inout) :: tsfc, tsfco, tsfcl, tisfc + real(kind=kind_phys), dimension(:), intent(inout) :: tsfc, tsfco, tsfcl real(kind=kind_phys), dimension(:), intent(inout) :: snowd_lnd, snowd_ice, tprcp_wat, & tprcp_lnd, tprcp_ice, tsfc_wat, tsurf_wat,tsurf_lnd, tsurf_ice, & uustar_wat, uustar_lnd, uustar_ice, weasd_lnd, weasd_ice, & @@ -86,7 +86,6 @@ subroutine GFS_surface_composites_pre_run (im, lkm, frac_grid, iopt_lake, iopt_l if (oceanfrac(i) > zero) then if (cice(i) >= min_seaice) then icy(i) = .true. - tisfc(i) = max(timin, min(tisfc(i), tgice)) if (cplflx) then islmsk_cice(i) = 4 flag_cice(i) = .true. @@ -111,7 +110,6 @@ subroutine GFS_surface_composites_pre_run (im, lkm, frac_grid, iopt_lake, iopt_l if (cice(i) >= min_lakeice) then icy(i) = .true. islmsk(i) = 2 - tisfc(i) = max(timin, min(tisfc(i), tgice)) else cice(i) = zero hice(i) = zero @@ -151,7 +149,6 @@ subroutine GFS_surface_composites_pre_run (im, lkm, frac_grid, iopt_lake, iopt_l if (oceanfrac(i) > zero) then if (cice(i) >= min_seaice) then icy(i) = .true. - tisfc(i) = max(timin, min(tisfc(i), tgice)) ! This cplice namelist option was added to deal with the ! situation of the FV3ATM-HYCOM coupling without an active sea ! ice (e.g., CICE6) component. By default, the cplice is true @@ -187,9 +184,6 @@ subroutine GFS_surface_composites_pre_run (im, lkm, frac_grid, iopt_lake, iopt_l is_clm = lkm>0 .and. iopt_lake==iopt_lake_clm .and. use_lake_model(i)>0 if (cice(i) >= min_lakeice) then icy(i) = .true. - if(.not.is_clm) then - tisfc(i) = max(timin, min(tisfc(i), tgice)) - endif islmsk(i) = 2 else cice(i) = zero diff --git a/physics/Interstitials/UFS_SCM_NEPTUNE/GFS_surface_composites_pre.meta b/physics/Interstitials/UFS_SCM_NEPTUNE/GFS_surface_composites_pre.meta index 33e2f0523..4d1021118 100644 --- a/physics/Interstitials/UFS_SCM_NEPTUNE/GFS_surface_composites_pre.meta +++ b/physics/Interstitials/UFS_SCM_NEPTUNE/GFS_surface_composites_pre.meta @@ -358,7 +358,7 @@ dimensions = (horizontal_loop_extent) type = real kind = kind_phys - intent = inout + intent = in [tsurf_wat] standard_name = surface_skin_temperature_after_iteration_over_water long_name = surface skin temperature after iteration over water diff --git a/physics/Interstitials/UFS_SCM_NEPTUNE/maximum_hourly_diagnostics.F90 b/physics/Interstitials/UFS_SCM_NEPTUNE/maximum_hourly_diagnostics.F90 index cd1016053..5ac28afe8 100644 --- a/physics/Interstitials/UFS_SCM_NEPTUNE/maximum_hourly_diagnostics.F90 +++ b/physics/Interstitials/UFS_SCM_NEPTUNE/maximum_hourly_diagnostics.F90 @@ -15,6 +15,9 @@ module maximum_hourly_diagnostics real(kind=kind_phys), parameter ::PQ0=379.90516E0, A2A=17.2693882, A3=273.16, A4=35.86, RHmin=1.0E-6 ! *DH + ! Conversion from flashes per five minutes to flashes per minute. + real(kind=kind_phys), parameter :: scaling_factor = 0.2 + contains #if 0 @@ -195,7 +198,10 @@ subroutine lightning_threat_indices endif IF ( ltg1 .LT. clim1 ) ltg1 = 0. - + + ! Scale to flashes per minue + ltg1 = ltg1 * scaling_factor + IF ( ltg1 .GT. ltg1_max(i) ) THEN ltg1_max(i) = ltg1 ENDIF @@ -208,14 +214,19 @@ subroutine lightning_threat_indices ltg2 = coef2 * totice_colint(i) IF ( ltg2 .LT. clim2 ) ltg2 = 0. + + ! Scale to flashes per minute + ltg2 = ltg2 * scaling_factor IF ( ltg2 .GT. ltg2_max(i) ) THEN ltg2_max(i) = ltg2 ENDIF + ! This calculation is already in flashes per minute. ltg3_max(i) = 0.95 * ltg1_max(i) + 0.05 * ltg2_max(i) - IF ( ltg3_max(i) .LT. clim3 ) ltg3_max(i) = 0. + ! Thus, we must scale clim3. The compiler will optimize this away. + IF ( ltg3_max(i) .LT. clim3 * scaling_factor ) ltg3_max(i) = 0. enddo end subroutine lightning_threat_indices diff --git a/physics/Interstitials/UFS_SCM_NEPTUNE/maximum_hourly_diagnostics.meta b/physics/Interstitials/UFS_SCM_NEPTUNE/maximum_hourly_diagnostics.meta index 0c2d1bcbe..5d18bd9bd 100644 --- a/physics/Interstitials/UFS_SCM_NEPTUNE/maximum_hourly_diagnostics.meta +++ b/physics/Interstitials/UFS_SCM_NEPTUNE/maximum_hourly_diagnostics.meta @@ -296,7 +296,7 @@ [ltg1_max] standard_name = lightning_threat_index_1 long_name = lightning threat index 1 - units = flashes 5 min-1 + units = flashes min-1 dimensions = (horizontal_loop_extent) type = real kind = kind_phys @@ -304,7 +304,7 @@ [ltg2_max] standard_name = lightning_threat_index_2 long_name = lightning threat index 2 - units = flashes 5 min-1 + units = flashes min-1 dimensions = (horizontal_loop_extent) type = real kind = kind_phys @@ -312,7 +312,7 @@ [ltg3_max] standard_name = lightning_threat_index_3 long_name = lightning threat index 3 - units = flashes 5 min-1 + units = flashes min-1 dimensions = (horizontal_loop_extent) type = real kind = kind_phys