-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcandidate_solution.py
123 lines (117 loc) · 4.95 KB
/
candidate_solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
class Board(object):
"""
Initialize board with green and red points for any cell.
Find the rectangle that has the highest number of green points with
constraint the required maximum red points
"""
def __init__(self, height, width, red_locs, green_locs):
self.width = width
self.height = height
self.red_locs = red_locs
self.green_locs = green_locs
self.board = self.init_board(height,width, red_locs, green_locs)
print("The red and green locs are")
print(red_locs)
print(green_locs)
def init_board(self, row, column, red_locs, green_locs):
# g represents number of green pieces in coordinate (i,j)
# r represents number of red pieces in coordinate (i,j)
g=np.zeros((row, column))
r=np.zeros((row, column))
#print(r,g)
#Count the number of pieces of red and green both in coordinate (i,j)
for x,y in red_locs:
r[x][y]=r[x][y]+1 #Counter will count each time red locs repeat the coordinate
for x,y in green_locs:
g[x][y]=g[x][y]+1
#print(r)
#print(g)
return r,g #Return a tuple 0 for r and 1 for g
def find_best_coordinates(self, max_red):
# gcount represents number of green pieces in rectangle (0,0) to (i,j)
# rcount represents number of red pieces in rectangle (0,0) to (i,j)
#board = self.board
gcount=np.zeros((self.height,self.width))#.reshape((width, height))
rcount=np.zeros((self.height,self.width))
#print(rcount,gcount)
best_coordinate=(None,None)
green_max = 0
#print(self.height,self.width)
for i in range(self.height):
for j in range(self.width):
# If we're in [0][0]
if i is 0 and j is 0:
rcount[i][j] = self.board[0][i][j]
gcount[i][j] = self.board[1][i][j]
#print (i,j,rcount[i][j], gcount[i][j])
# If we're in first line
elif i is 0 and j is not 0:
rcount[i][j]=rcount[i][j-1]+self.board[0][i][j]
gcount[i][j]=gcount[i][j-1]+self.board[1][i][j]
#print (i,j,rcount[i][j], gcount[i][j])
else:
rr=0# Defined variable to count the red pieces from (i,0) to (i.j) for i>1
gg=0# Defined variable to count the green pieces from (i,0) to (i.j) for i>1
for p in range(j):
rr+=self.board[0][i][p]
gg+=self.board[1][i][p]
rcount[i][j]=rcount[i-1][j]+rr+ self.board[0][i][j]
gcount[i][j]=gcount[i-1][j]+gg+self.board[1][i][j]
# If we achieve max_red here, we store maximum green points
if rcount[i][j] <= max_red and green_max < gcount[i][j]:
green_max = gcount[i][j]
best_coordinate=(i,j)
print("The rcount and gcount Matrix are:")
print(rcount)
print(gcount)
return best_coordinate
def test_board():
#Example 1
print("Example 1:")
print("Testing 3x1 board...")
red_locs= [(0,0), (1,0), (2,0)]
green_locs = [(1,0), (2,0)]
board= Board(3, 1, red_locs, green_locs)
max_red=2
best = board.find_best_coordinates(max_red)
print("The best coordinate for max_red=2 is ")
print(best)
#Example 2
print ("Example 2:")
print("Testing 5x3 board...")
red_locs= [(0,0), (1,0), (2,0),(2,2),(2,1),(2,1)]
green_locs = [(1,0), (2,0)]
board= Board(5, 3,red_locs, green_locs)
#print("The 2D Board having MXN matrix of Red count tuple with MXN matrix of Green Count is")
max_red=5
best=board.find_best_coordinates(max_red)
print("The best coordinate is for max_red=5 is" )
print(best)
#Example 3
print ("Example 3:")
print("Testing 10,000 x 3 board...")
red_locs = [(9000, 0), (1200, 2), (5000, 1)]
board = Board(10000, 3, red_locs, green_locs)
best=board.find_best_coordinates(2)
print("The best coordinate for max_red=2 is")
print(best)
#Test Case Usage Example
print ("Example 4:")
print("Testing 2x2 board...")
red_locs = [(0,0), (1,1), (1,1)]
green_locs = [(0,0), (0,1), (1,0)]
board = Board(2, 2, red_locs, green_locs)
#The 2D Board having MXN matrix of Red count tuple with MXN matrix of Green Count
print(board)
best=board.find_best_coordinates(1)
print("The best coordinate for max_red=1 ")
print(best)
best=board.find_best_coordinates(2)
print("The best coordinate for max_red=2")
print(best)
best=board.find_best_coordinates(3)
print("The best coordinate for max_red=3")
print(best)
if __name__ == "__main__":
test_board()