-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.py
89 lines (66 loc) · 2.18 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import matplotlib
matplotlib.use('QT5Agg')
import matplotlib.pyplot as plt
import numpy as np
from scipy.io import loadmat
from scipy.signal import welch
from SSICOV_GPU import SSICOV
from SSI_posprocessor import plotStabDiag , cluster_data_by_frequency
def testing_data():
mat = loadmat('data/BridgeData.mat')
t, rz, wn = mat['t'], mat['rz'], mat['wn']
return t, rz, wn
def plot_Data(t, rz, wn):
# Transform circular frequency (rad/s) into frequency (Hz)
fnTarget = wn / (2 * np.pi)
# Get time step
dt = np.median(np.diff(t))
# Get sampling frequency
fs = 1 / dt
# Get the number of sensors and the number of time steps
Nyy, N = rz.shape
# Visualization of the data
plt.figure()
# Displacement record from sensor no 2
plt.subplot(221)
plt.plot(t[0], rz[1, :])
plt.xlim([0, 600])
plt.xlabel('time (s)')
plt.ylabel('r_z (m)')
plt.title('Displ record from sensor no 2')
# PSD estimate from sensor no 2
plt.subplot(222)
f, Pxx = welch(rz[1, :], fs=fs, nperseg=None, noverlap=None)
plt.plot(f, Pxx)
plt.xscale('log')
plt.title('PSD estimate from sensor no 2')
# Displacement record from sensor no 5
plt.subplot(223)
plt.plot(t[0], rz[4, :])
plt.xlim([0, 600])
plt.xlabel('time (s)')
plt.ylabel('r_z (m)')
plt.title('Displ record from sensor no 5')
# PSD estimate from sensor no 5
plt.subplot(224)
f, Pxx = welch(rz[4, :], fs=fs, nperseg=None, noverlap=None)
plt.plot(f, Pxx)
plt.xscale('log')
plt.title('PSD estimate from sensor no 5')
# Set the figure background color to white
plt.gcf().set_facecolor('w')
# Show the plots
plt.show()
if __name__ == '__main__':
t,rz,wn = testing_data()
fs = 15
acc = rz.T
Nmin = 7
Nmax = 50
Nc = acc.shape[1]
Ts = 100
ssi_constructor = SSICOV(acc, fs, Ts, Nc, Nmax, Nmin)
fnS,zetaS,phiS,MACS,stability_status,fn2 = ssi_constructor.run()
num_clusters = 6
cluster_data_by_frequency(fnS, zetaS, phiS, num_clusters)
plotStabDiag(fn2, acc, fs, stability_status, Nmin, Nmax, acc.shape[1], 0, 7.5)