-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrewards.py
183 lines (141 loc) · 7.1 KB
/
rewards.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from rlgym.utils.reward_functions import RewardFunction
from rlgym.utils import math
from rlgym.utils.gamestates import GameState, PlayerData
from rlgym.utils.common_values import BALL_RADIUS, CAR_MAX_SPEED, SUPERSONIC_THRESHOLD
import numpy as np
def scalar_speed_towards_ball(player :PlayerData, state: GameState) -> float:
vel = player.car_data.linear_velocity
pos_diff = state.ball.position - player.car_data.position
norm_pos_diff = pos_diff / np.linalg.norm(pos_diff)
scalar_vel_towards_ball = float(np.dot(norm_pos_diff, vel))
return scalar_vel_towards_ball
class SpeedReward(RewardFunction):
def reset(self, initial_state: GameState):
pass
def get_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
linear_velocity = player.car_data.linear_velocity
reward = float(math.vecmag(linear_velocity))
return reward
def get_final_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
return 0
class QuickestTouchReward(RewardFunction):
def __init__(self, timeout=0, tick_skip=8, num_agents=1):
self.timeout = timeout * 120 # convert to ticks
self.tick_skip = tick_skip
self.num_agents = num_agents
def reset(self, initial_state: GameState):
self.timer = 0
def get_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
self.timer += self.tick_skip
return 0
def get_final_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
self.timer = self.timer / self.num_agents
if player.ball_touched:
#print("Touched ball after steps: ", self.timer)
reward = ((self.timeout - self.timer) / self.timeout) * 100 + 30
else:
norm_elapsed_time = self.timer / self.timeout
player_ball_distance = float(np.linalg.norm(state.ball.position - player.car_data.position))
norm_distance = player_ball_distance / 3500.0 # starting distance is 3500
reward = -((norm_elapsed_time * 100) + (norm_distance * 100)) - 30
# print("QuickestTouchReward.FinalReward(): ", reward)
return reward
class SustainedVelocityPlayerToBallReward(RewardFunction):
def __init__(self):
super().__init__()
self.comulative_reward = 0
def reset(self, initial_state: GameState):
self.comulative_reward = 0
def get_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
vel = player.car_data.linear_velocity
pos_diff = state.ball.position - player.car_data.position
norm_pos_diff = pos_diff / np.linalg.norm(pos_diff)
scalar_vel_towards_ball = float(np.dot(norm_pos_diff, vel))
norm_scalar_vel_towards_ball = scalar_vel_towards_ball / SUPERSONIC_THRESHOLD
if norm_scalar_vel_towards_ball > 0 and norm_scalar_vel_towards_ball < 1:
reward = (scalar_vel_towards_ball / CAR_MAX_SPEED) / 50
else:
if norm_scalar_vel_towards_ball < 0:
reward = (scalar_vel_towards_ball / CAR_MAX_SPEED) * 4
else:
reward = (scalar_vel_towards_ball / CAR_MAX_SPEED)
self.comulative_reward += reward
return reward
def get_final_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
# print("VelocityPlayerToBall: Cumulative: ", self.comulative_reward)
return 0
class AccelerationPlayerToBallReward(RewardFunction):
def __init__(self, tick_skip=8):
super().__init__()
self.tick_skip = tick_skip
self.CAR_MAX_ACC = (CAR_MAX_SPEED ) / self.tick_skip
self.cumulative_reward = 0
def reset(self, initial_state: GameState):
self.previous_velocity = 0.0
self.cumulative_reward = 0
def get_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
vel = player.car_data.linear_velocity
pos_diff = state.ball.position - player.car_data.position
norm_pos_diff = pos_diff / np.linalg.norm(pos_diff)
scalar_vel_towards_ball = float(np.dot(norm_pos_diff, vel))
acc_towards_ball = (scalar_vel_towards_ball - self.previous_velocity) / self.tick_skip
self.previous_velocity = scalar_vel_towards_ball
if acc_towards_ball >= 0:
reward = (acc_towards_ball / self.CAR_MAX_ACC) * 0
else:
norm_acc_towards_ball = (acc_towards_ball / self.CAR_MAX_ACC) * 1
reward = norm_acc_towards_ball
self.cumulative_reward += reward
return reward
def get_final_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
# print("AccelerationPlayerToBall: Cumulative: ", self.cumulative_reward)
return 0
class SpeedOnBallTouchReward(RewardFunction):
def __init__(self):
super().__init__()
self.cumulative_reward = 0
def reset(self, initial_state: GameState):
self.cumulative_reward = 0
def get_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
if player.ball_touched==True:
speed_to_ball = scalar_speed_towards_ball(player, state)
reward = ((speed_to_ball / SUPERSONIC_THRESHOLD) - 1) * 20
else:
reward = 0
self.cumulative_reward += reward
return reward
def get_final_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
# print("SpeedOnBallTouchReward: Cumulative: ", self.cumulative_reward)
return 0
class FaceBallReward(RewardFunction):
def __init__(self):
super().__init__()
self.cumulative_reward = 0
def reset(self, initial_state: GameState):
self.cumulative_reward = 0
def get_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
pos_diff = state.ball.position - player.car_data.position
norm_pos_diff = pos_diff / np.linalg.norm(pos_diff)
reward = float(np.dot(player.car_data.forward(), norm_pos_diff)) / 100
self.cumulative_reward += reward
return reward
def get_final_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
# print("FaceBallReward: Cumulative: ", self.cumulative_reward)
return 0
class OnGroundReward(RewardFunction):
def __init__(self):
super().__init__()
self.cumulative_reward = 0
def reset(self, initial_state: GameState):
self.cumulative_reward = 0
def get_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
if player.on_ground:
reward = 0.7
else:
reward = -1
reward = reward / 100
self.cumulative_reward += reward
return reward
def get_final_reward(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> float:
# print("OnGroundReward: Cumulative: ", self.cumulative_reward)
return 0