You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Found 223 images belonging to 1 classes.
Found 24 images belonging to 1 classes.
INFO:autoencoder.autoencoder:initiating learning rate finder to determine best learning rate.
simulating training for different learning rates... this may take a few moments...
Epoch 1/10
13/13 [==============================] - 152s 12s/step - loss: 0.6025 - mssim: 0.3975
Epoch 2/10
13/13 [==============================] - 152s 12s/step - loss: 0.5974 - mssim: 0.4026
Epoch 3/10
13/13 [==============================] - 156s 12s/step - loss: 0.5921 - mssim: 0.4079
Epoch 4/10
13/13 [==============================] - 155s 12s/step - loss: 0.5702 - mssim: 0.4298
Epoch 5/10
13/13 [==============================] - 156s 12s/step - loss: nan - mssim: nan
Epoch 6/10
13/13 [==============================] - 155s 12s/step - loss: nan - mssim: nan
Epoch 7/10
13/13 [==============================] - 148s 11s/step - loss: nan - mssim: nan
Epoch 8/10
13/13 [==============================] - 146s 11s/step - loss: nan - mssim: nan
Epoch 9/10
13/13 [==============================] - 144s 11s/step - loss: nan - mssim: nan
Epoch 10/10
13/13 [==============================] - 143s 11s/step - loss: nan - mssim: nan
done.
Visually inspect loss plot and select learning rate associated with falling loss
INFO:autoencoder.autoencoder:lr with minimum loss divided by 10: 8.09E-04
INFO:autoencoder.autoencoder:lr with minimum numerical gradient: 8.38E-05
C:\Users\Administrator\Desktop\MVTec-Anomaly-Detection-master\autoencoder\autoencoder.py:231: RuntimeWarning: invalid value encountered in less
self.lr_opt_i = np.argwhere(segment < optimal_loss)[0][0]
Traceback (most recent call last):
File "train.py", line 238, in
main(args)
File "train.py", line 81, in main
autoencoder.find_lr_opt(train_generator, validation_generator)
File "C:\Users\Administrator\Desktop\MVTec-Anomaly-Detection-master\autoencoder\autoencoder.py", line 194, in find_lr_opt
self.custom_lr_estimate()
File "C:\Users\Administrator\Desktop\MVTec-Anomaly-Detection-master\autoencoder\autoencoder.py", line 231, in custom_lr_estimate
self.lr_opt_i = np.argwhere(segment < optimal_loss)[0][0]
IndexError: index 0 is out of bounds for axis 0 with size 0
The text was updated successfully, but these errors were encountered:
I was having the same issue, only when using custom datasets... it worked fine with MVTEC datasets.
Solved it by increasing the size of the dataset (number of images).
Found 223 images belonging to 1 classes.
Found 24 images belonging to 1 classes.
INFO:autoencoder.autoencoder:initiating learning rate finder to determine best learning rate.
simulating training for different learning rates... this may take a few moments...
Epoch 1/10
13/13 [==============================] - 152s 12s/step - loss: 0.6025 - mssim: 0.3975
Epoch 2/10
13/13 [==============================] - 152s 12s/step - loss: 0.5974 - mssim: 0.4026
Epoch 3/10
13/13 [==============================] - 156s 12s/step - loss: 0.5921 - mssim: 0.4079
Epoch 4/10
13/13 [==============================] - 155s 12s/step - loss: 0.5702 - mssim: 0.4298
Epoch 5/10
13/13 [==============================] - 156s 12s/step - loss: nan - mssim: nan
Epoch 6/10
13/13 [==============================] - 155s 12s/step - loss: nan - mssim: nan
Epoch 7/10
13/13 [==============================] - 148s 11s/step - loss: nan - mssim: nan
Epoch 8/10
13/13 [==============================] - 146s 11s/step - loss: nan - mssim: nan
Epoch 9/10
13/13 [==============================] - 144s 11s/step - loss: nan - mssim: nan
Epoch 10/10
13/13 [==============================] - 143s 11s/step - loss: nan - mssim: nan
done.
Visually inspect loss plot and select learning rate associated with falling loss
INFO:autoencoder.autoencoder:lr with minimum loss divided by 10: 8.09E-04
INFO:autoencoder.autoencoder:lr with minimum numerical gradient: 8.38E-05
C:\Users\Administrator\Desktop\MVTec-Anomaly-Detection-master\autoencoder\autoencoder.py:231: RuntimeWarning: invalid value encountered in less
self.lr_opt_i = np.argwhere(segment < optimal_loss)[0][0]
Traceback (most recent call last):
File "train.py", line 238, in
main(args)
File "train.py", line 81, in main
autoencoder.find_lr_opt(train_generator, validation_generator)
File "C:\Users\Administrator\Desktop\MVTec-Anomaly-Detection-master\autoencoder\autoencoder.py", line 194, in find_lr_opt
self.custom_lr_estimate()
File "C:\Users\Administrator\Desktop\MVTec-Anomaly-Detection-master\autoencoder\autoencoder.py", line 231, in custom_lr_estimate
self.lr_opt_i = np.argwhere(segment < optimal_loss)[0][0]
IndexError: index 0 is out of bounds for axis 0 with size 0
The text was updated successfully, but these errors were encountered: