forked from llmware-ai/llmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_rag_ui_with_streamlit.py
86 lines (53 loc) · 2.96 KB
/
simple_rag_ui_with_streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
""" This example shows how to build a simple RAG application with UI with Streamlit and LLMWare.
Note: it requires a separate `pip install streamlit`, and to run the script, you should run from the
command line with:
`streamlit run using_with_streamlit_ui.py`
For this example, we will be prompting against a set of Invoice documents, provided in the LLMWare
sample files.
If you would like to substitute longer documents then please look at the UI example:
-- rag_ui_with_query_topic_with_streamlit.py
as a framework to get started integrating a retrieval step before the prompt of the source
For more information about Streamlit, check out their docs: https://docs.streamlit.io/develop/tutorials
"""
import os
import streamlit as st
from llmware.prompts import Prompt
from llmware.setup import Setup
# st.set_page_config(layout="wide")
def simple_analyzer ():
st.title("Simple RAG Analyzer")
prompter = Prompt()
sample_files_path = Setup().load_sample_files(over_write=False)
doc_path = os.path.join(sample_files_path, "Invoices")
files = os.listdir(doc_path)
file_name = st.selectbox("Choose an Invoice", files)
prompt_text = st.text_area("Question (hint: 'what is the total amount of the invoice?'")
model_name = st.selectbox("Choose a model for answering questions", ["bling-phi-3-gguf",
"bling-tiny-llama-1b",
"bling-stablelm-3b-tool",
"llama-3-instruct-bartowski-gguf",
"dragon-llama-answer-tool"])
if st.button("Run Analysis"):
if file_name and prompt_text and model_name:
prompter.load_model(model_name, temperature=0.0, sample=False)
# parse the PDF in memory and attach to the prompt
sources = prompter.add_source_document(doc_path,file_name)
# run the inference with the source
response = prompter.prompt_with_source(prompt_text)
# fact checks
fc = prompter.evidence_check_numbers(response)
cs = prompter.evidence_check_sources(response)
if len(response) > 0:
if "llm_response" in response[0]:
response = response[0]["llm_response"]
st.write(f"Answer: {response}")
if len(fc) > 0:
if "fact_check" in fc[0]:
fc_out = fc[0]["fact_check"]
st.write(f"Numbers Check: {fc_out}")
if len(cs) > 0:
if "source_review" in cs[0]:
sr_out = cs[0]["source_review"]
st.write(f"Source review: {sr_out}")
if __name__ == "__main__":
simple_analyzer()