-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathelGamel_encry_decry.py
112 lines (98 loc) · 3.61 KB
/
elGamel_encry_decry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def gcd(a,b):
if (a==0):
return b;
return gcd(b%a,a);
# Function to return members of group Zn*
def groupMembers(n):
arr=[]
# 1 is always a generator and member
for i in range(1, n):
# Checking relative prime nature
if (gcd(i,n)==1):
arr.append(i)
return arr
# Function to return the primitive roots modulo p (Zp*)
def PrimitiveRoots(p):
members=groupMembers(p)
factors=[]
print("Euler's toutient function value: ")
print("Phi(p): ",len(members))
for i in range(1,len(members)+1):
if(len(members)%i==0):
factors.append(i)
c=[]
for i in members:
ar=[]
for j in factors:
if(pow(i,j)%p==1):
ar.append(j)
if(len(ar)==0):
c.append(0)
else:
c.append(min(ar))
return(c)
p=int(input("Enter a large prime number: "))
members=groupMembers(p)
print("The members in the group Zp* are: ",members)
# d to be a member of the Zp*
d=int(input("Select a number from the array as d(private key): "))
if(d not in members or d>p-2):
print("Entered wrong number")
else:
primitives=[]
powers=PrimitiveRoots(p)
# finding primitives from powers
# Used Legrange's theorem
for i in powers:
if(i==len(members)):
primitives.append(members[powers.index(i)])
powers[powers.index(i)]=0
# e1 is primitive root in Zp*
print("The list of primitive roots are: ",primitives)
e1=int(input("Enter the primitive root of Zp*: "))
if(e1 not in primitives):
print("Entered wrong number")
else:
e2=pow(e1,d)%p
print("Public key (e1,e2,p): ",e1," ",e2," ",p)
print("Private key (d): ",d)
# Encryption
print("Enter an integer from Zp*: ", members)
r=int(input())
if(r not in members):
print("Entered wrong number")
else:
C1=pow(e1,r)%p
message=int(input("Enter the message in numbers: "))
C2=(message*pow(e2,r))%p
# Decryption:
P=(pow(C1,p-d-1)*C2)%p
print("Encrypted message (C1): ",C1)
print("Encrypted message (C2): ",C2)
print("Decrypted message is: ",P)
'''
----------OUTPUT----------
Enter a large prime number: 53
The members in the group Zp* are: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]
Select a number from the array as d(private key): 36
Euler's toutient function value:
Phi(p): 52
The list of primitive roots are: [2, 3, 5, 8, 12, 14, 18, 19, 20, 21, 22, 26, 27, 31, 32, 33, 34, 35, 39, 41, 45, 48, 50, 51]
Enter the primitive root of Zp*: 50
Public key (e1,e2,p): 50 46 53
Private key (d): 36
Enter an integer from Zp*: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]
31
Enter the message in numbers: 48
Encrypted message (C1): 31
Encrypted message (C2): 30
Decrypted message is: 48
>>>
'''
'''
Note: The message to be encrypted must be less than the prime value given initially
Took help from:
1. https://www.wolframalpha.com/widgets/view.jsp?id=ef51422db7db201ebc03c8800f41ba99
2. https://en.wikipedia.org/wiki/Primitive_root_modulo_n
Thanks for the help !
'''