forked from eaglelab-zju/NoisyGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyperparam_opt.py
81 lines (77 loc) · 3.5 KB
/
hyperparam_opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from nni.experiment import Experiment
from utils.tools import load_conf, save_conf
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str,
default='cora',
choices=['cora', 'citeseer', 'pubmed', 'amazoncom', 'amazonpho', 'dblp', 'blogcatalog', 'flickr'],
help='Select dataset')
parser.add_argument('--method', type=str,
default='gcn',
choices=['gcn', 'gin', 'smodel', 'jocor', 'coteaching', 'apl', 'sce', 'forward', 'backward', 'lcat',
'nrgnn', 'rtgnn', 'cp', 'unionnet', 'cgnn', 'crgnn', 'clnode', 'rncgln', 'pignn', 'dgnn'],
help="Select methods")
parser.add_argument('--noise_type', type=str,
default='uniform',
choices=['clean', 'uniform', 'pair', 'random'], help='Type of label noise')
parser.add_argument('--noise_rate', type=float,
default='0.3',
help='Label noise rate')
parser.add_argument('--device', type=str,
default='cuda:0',
help='Device')
parser.add_argument('--seed', type=int,
default=3000,
help="Random Seed")
parser.add_argument('--max_trial_number', type=int,
default=20,
help="Max trial number for hyperparameter optimization")
parser.add_argument('--trial_concurrency', type=int,
default=10,
help="How many trials running at the same time")
parser.add_argument('--tuner', type=str,
default='Random',
help="Select HPO Tuner")
parser.add_argument('--port', type=int,
default=8081,
help="The port on which NNI manager will run")
parser.add_argument('--update_config', type=bool,
default=True,
help="Update config file with optimized parameters")
args = parser.parse_args()
if __name__ == '__main__':
experiment = Experiment('local')
command = 'python single_exp.py'
for k, v in sorted(vars(args).items()):
if k in ['data', 'method', 'noise_type', 'noise_rate', 'device', 'seed']:
command += ' --' + k + '=' + str(v)
experiment.config.trial_command = command
experiment.config.trial_code_directory = '.'
experiment.config.search_space_file = './config/_search_space/' + args.method + '.json'
experiment.config.tuner.name = args.tuner
experiment.config.assessor.name = 'Medianstop'
experiment.config.tuner.class_args['optimize_mode'] = 'maximize'
experiment.config.max_trial_number = args.max_trial_number
experiment.config.trial_concurrency = args.trial_concurrency
experiment.run(args.port, debug=True)
result = experiment.export_data()
max_acc = 0
opt_params = {}
for item in result:
if item.value > max_acc:
max_acc = item.value
opt_params = item.parameter
print("highest acc")
print(max_acc)
print("optimized parameters")
print(opt_params)
if args.update_config:
model_conf = load_conf(None, args.method, args.dataset)
for item in opt_params.keys():
if item in ['lr', 'weight_decay']:
model_conf.training[item] = opt_params[item]
else:
model_conf.model[item] = opt_params[item]
model_conf = vars(model_conf)
save_conf(None, args.method, args.dataset, model_conf)
experiment.stop()