-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_GPN_SA.py
353 lines (285 loc) · 14.2 KB
/
train_GPN_SA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# 20220119
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torch.nn.functional as F
import os
import sys
import configparam
import time
from torchsummary import summary
from torch.utils.data.sampler import SubsetRandomSampler
import pickle
from models import *
from adversarial_models import *
from lost_functions import *
from dataloaders.amigos_cnn_loader import amigos_cnn_loader
from dataloaders.deap_cnn_loader import deap_cnn_loader
from dataloaders.physionet_cnn_loader import physionet_cnn_loader
from dataloaders.ner2015_cnn_loader import ner2015_cnn_loader
from dataloaders.data_split import data_split
from sklearn.model_selection import KFold, train_test_split
torch.manual_seed(0)
k_folds = 5
def weights_init(model):
classname = model.__class__.__name__
if classname.find('Conv') != -1: # Conv가 존재시
nn.init.normal_(model.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1: # BatchNorm이 존재시
nn.init.normal_(model.weight.data, 1.0, 0.02)
nn.init.constant_(model.bias.data, 0)
def train(param):
param.PrintConfig()
learning_rate = param.learning_rate
num_epoch = param.num_epoch
patience = 15
# loading model and dataset
# set model
if param.model == 'eegnet':
print('Model: EEGNet')
model = EEGNet(param.num_channel, param.num_length, param.num_class)
elif param.model == 'sconvnet':
print('Shallow Conv Net')
model = ShallowConvNet(param.num_channel, param.num_length, param.num_class)
elif param.model == 'dconvnet':
print('Deep Conv Net')
model = DeepConvNet(param.num_channel, param.num_length, param.num_class)
elif param.model == 'resnet':
print('ResNet')
model = ResNet8(param.num_class)
# model = EEGResNet(in_chans=param.num_channel, n_classes=param.num_class, input_window_samples=param.num_length)
elif param.model == 'tidnet':
print('TIDNet')
model = TIDNet(in_chans=param.num_channel, n_classes=param.num_class, input_window_samples=param.num_length)
elif param.model == 'vgg':
print('VGG')
model = vgg_eeg(pretrained=False, num_classes=param.num_class)
# Load dataset!
if param.dataset == 'amigos':
data_set = amigos_cnn_loader(param)
elif param.dataset == 'deap':
data_set = deap_cnn_loader(param)
elif param.dataset == 'physionet':
data_set = physionet_cnn_loader(param)
elif param.dataset == 'ner2015':
data_set = ner2015_cnn_loader(param)
if param.use_predefined_idx == 0:
print('pretrained index has to be 1')
exit()
# Define the K-fold Cross Validator
kfold = KFold(n_splits=k_folds, shuffle=True, random_state=0)
# For fold results
results = []
for fold, (train_ids, test_ids) in enumerate(kfold.split(data_set)):
# Print
print('-----------------------')
print(f'FOLD {fold}')
print('-----------------------')
# Sample elements randomly from a given list of ids, no replacement.
# train_ids, val_ids = train_test_split(train_ids, test_size=0.25, shuffle=True, random_state=0)
np.random.seed(0)
train_subsampler = torch.utils.data.SubsetRandomSampler(train_ids)
test_subsampler = torch.utils.data.SubsetRandomSampler(test_ids)
# Define data loaders for training and testing data in this fold
train_loader = torch.utils.data.DataLoader(data_set, batch_size=param.batch_size, sampler=train_subsampler, num_workers=12)
test_loader = torch.utils.data.DataLoader(data_set, batch_size=param.batch_size, sampler=test_subsampler, num_workers=12)
# If not pretrained, quit
if param.use_pretrained == 0:
print('use pretrained has to be 1')
exit()
# Load model
pretrained_weight_file = param.result_path + '/pretrained/' + f'fold{fold}_' + param.pretrained_name
print('Load pretrained Model:' + pretrained_weight_file)
model.load_state_dict(torch.load(pretrained_weight_file))
model.eval()
model.cuda()
# load UAP generator and discriminator
generator = GenResNet(1, param.num_channel, param.num_length)
generator.apply(weights_init)
generator.train()
generator.cuda()
# Universal Example is from noise that has same size with the input signals
# fix distributions of noise
np.random.seed(0)
init_noise = np.random.uniform(0, 1, (param.num_channel, param.num_length))
init_noise = np.reshape(init_noise, (1, param.num_channel, param.num_length))
init_noise = init_noise[np.newaxis, :, :, :]
# init_noise = np.tile(init_noise, (param.batch_size, 1, 1, 1))
init_noise_cuda = torch.from_numpy(init_noise).type(torch.FloatTensor).cuda()
# init_noise_batch = np.tile(init_noise, (param.batch_size, 1, 1, 1))
# init_noise_cuda = torch.FloatTensor(init_noise_batch).cuda()
# Define Loss function
loss_func = nn.CrossEntropyLoss()
#loss_func = FocalLoss()
# Define Adam optimizer and scheduler
optimizer = optim.Adam(generator.parameters(), lr=learning_rate)
scheduler = lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)
# Constraint on magnitude of perturbation
norm_type = param.norm_type
norm_limit = param.epsilon
# Set best_acc
if param.attack_type == 'non-targeted':
best_val_accuracy = 100
elif param.attack_type == 'targeted':
best_val_accuracy = 0
loss_total = 0.0
cnt = 0
for i in range(num_epoch):
loss_epoch = 0.0
cnt_epoch = 0
num_positive = 0
num_total = 0
num_fool = 0
t0 = time.time()
train_fooling_ratio = 0
test_fooling_ratio = 0
for train_x, train_y in train_loader:
train_x = train_x.cuda()
train_y = train_y.cuda()
if param.attack_type == 'non-targeted':
# target_label = train_y.cuda()
cur_noise_cuda = init_noise_cuda
# Get original prediction from victim model
with torch.no_grad():
output = model.forward(train_x.cuda())
output_sm = F.softmax(output, dim=1)
_, target_label = torch.max(output_sm, 1)
elif param.attack_type == 'targeted':
target_label = torch.add(torch.mul(train_y, 0), param.attack_target)
target_label = target_label.cuda()
cur_noise_cuda = init_noise_cuda
generator.zero_grad()
# Generate perturbation
adv_exam_cuda = generator(cur_noise_cuda) # range : -1 ~ 1
# adv_exam_cuda_perturbation = adv_exam_cuda * norm_limit # range : -norm_limit ~ norm_limit
# Scale
norm_exam = adv_exam_cuda.view(adv_exam_cuda.shape[0], -1)
if norm_type == 'inf':
norm_exam = torch.norm(norm_exam, p=float('inf'), dim=1)
elif norm_type == 'L2':
norm_exam = torch.norm(norm_exam, p=2, dim=1)
adv_exam_cuda = torch.mul(adv_exam_cuda / norm_exam.view(adv_exam_cuda.shape[0], 1, 1, 1), norm_limit)
train_x_adv = torch.add(train_x.cuda(), adv_exam_cuda_perturbation)
# Do clamping per channel
for cii in range(param.num_channel):
train_x_adv[:, :, cii, :] = train_x_adv[:, :, cii, :].clone().clamp(min=train_x[:, :, cii, :].min(), max=train_x[:, :, cii, :].max())
output = model.forward(train_x_adv)
if param.attack_type == 'non-targeted':
loss = torch.log(loss_func(1-F.softmax(output, dim=1), target_label))
#loss = -torch.log(loss_func(output, target_label))
#loss = loss_func(-output, target_label)
elif param.attack_type == 'targeted':
loss = loss_func(output, target_label)
loss.backward()
optimizer.step()
# Train acc
output_sm = F.softmax(output, dim=1)
_, output_index = torch.max(output_sm, 1)
res = output_index.cpu().detach().numpy()
if param.attack_type == 'non-targeted':
tp = (res == train_y.cpu().detach().numpy()).sum()
elif param.attack_type == 'targeted':
tp = (res == target_label.cpu().detach().numpy()).sum()
num_positive = num_positive + tp
num_total = num_total + res.shape[0]
# Fooling rate
num_fool += (res != target_label.cpu().detach().numpy()).sum()
scheduler.step()
train_accuracy = num_positive / num_total
train_fooling_ratio = num_fool / num_total
num_positive = 0
num_total = 0
cnt_epoch += 1
uap_exam = adv_exam_cuda_perturbation.cpu().detach().numpy()[0, :, :, :]
t1 = time.time()
print(
'epoch:{} loss:{:.4f} train accuracy:{:.4f} train fooling ratio:{:.4f} time:{:.4f} lr:{}'.format(
i + 1, loss, train_accuracy, train_fooling_ratio, (t1 - t0),
scheduler.get_last_lr()))
# Save best perturbation
# if param.attack_type == 'non-targeted':
# uap_file_name = param.uap_path + 'uap_air_exam_nt_fold.npy'%fold
# np.save(uap_file_name, uap_exam)
# print('Saved best perturbation at ' + uap_file_name)
# else:
# uap_file_name = param.uap_path + 'uap_air_exam_t%d_fold%d.npy' % (param.attack_target, fold)
# np.save(uap_file_name, uap_exam)
# print('Saved best perturbation at ' + uap_file_name)
# Reset for test
clean_num_positive = 0
clean_num_total = 0
num_positive = 0
num_total = 0
num_fool = 0
for test_x, test_y in test_loader:
#adv_exam_cuda_perturbation = np.load(uap_file_name)
#adv_exam_cuda_perturbation = torch.from_numpy(adv_exam_cuda_perturbation).cuda()
#adv_exam_cuda_perturbation = adv_exam_cuda_perturbation.cuda()
# Generate perturbation
adv_exam_cuda = generator(cur_noise_cuda) # range : -1 ~ 1
adv_exam_cuda_perturbation = adv_exam_cuda * norm_limit # range : -norm_limit ~ norm_limit
test_x_adv = torch.add(test_x.cuda(), adv_exam_cuda_perturbation)
# Do clamping per channel
for cii in range(param.num_channel):
test_x_adv[:, :, cii, :] = test_x_adv[:, :, cii, :].clone().clamp(min=test_x[:, :, cii, :].min(),
max=test_x[:, :, cii, :].max())
if param.attack_type == 'targeted':
test_y = torch.add(torch.mul(test_y, 0), param.attack_target)
with torch.no_grad():
# Clean Accuracy
output = model.forward(test_x.cuda())
output_sm = F.softmax(output, dim=1)
_, pred_label = torch.max(output_sm, 1)
clean_res_test = pred_label.cpu().detach().numpy()
# Adversarial Accuracy
output = model.forward(test_x_adv)
output_sm = F.softmax(output, dim=1)
_, output_index = torch.max(output_sm, 1)
res_test = output_index.cpu().detach().numpy()
clean_tp_test = (clean_res_test == test_y.detach().numpy()).sum()
tp_test = (res_test == test_y.detach().numpy()).sum()
clean_num_positive = clean_num_positive + clean_tp_test
num_positive = num_positive + tp_test
num_fool += (res_test != pred_label.cpu().detach().numpy()).sum()
num_total = num_total + res_test.shape[0]
clean_test_accuracy = clean_num_positive / num_total
test_accuracy = num_positive / num_total
test_fooling_ratio = num_fool / num_total
results.append([clean_test_accuracy, test_accuracy, test_fooling_ratio])
print('Adversarial test result on fold {}: {:.4f} -> {:.4f}, test fooling ratio {:.4f}'.format(fold, clean_test_accuracy, test_accuracy, test_fooling_ratio))
# Print fold results
print(f'Finished K-FOLD CROSS VALIDATION RESULTS FOR {k_folds} FOLDS')
print('--------------------------------')
sum_clean = 0.0
sum_adv = 0.0
sum_fool = 0.0
for i in range(len(results)):
print('Fold : {}, test_acc : {:.4f} -> {:.4f}, test fooling ratio {:.4f}'.format(i, results[i][0], results[i][1], results[i][2]))
sum_clean += results[i][0]
sum_adv += results[i][1]
sum_fool += results[i][2]
print('Average: {:.4f} -> {:.4f}, fooling ratio {:.4f}'.format(sum_clean / len(results), sum_adv / len(results), sum_fool / len(results)))
# Save result
result_list = np.array(results)
result_list = np.append(result_list, np.array([[sum_clean / len(results), sum_adv / len(results), sum_fool / len(results)]]), axis=0)
# if param.attack_type == 'targeted':
# np.savetxt(param.uap_path + '_air_exam_result_target%d_fold.txt' % param.attack_target, result_list, fmt='%1.4f')
# print('saved at' + param.uap_path + '_air_exam_result_target%d_fold.txt'% param.attack_target)
# elif param.attack_type == 'non-targeted':
# np.savetxt(param.uap_path + '_air_exam_result_non_target_fold.txt', result_list, fmt='%1.4f')
# print('saved at' + param.uap_path + '_air_exam_result_non_target_fold.txt')
if __name__ == '__main__':
no_gpu = 1
if len(sys.argv) > 1:
conf_file_name = sys.argv[1]
if len(sys.argv) > 2:
no_gpu = int(sys.argv[2])
else:
conf_file_name = './config/non-target/eval_physionet_sconvnet.cfg'
conf = configparam.ConfigParam()
conf.LoadConfiguration(conf_file_name)
torch.cuda.set_device(no_gpu)
print('GPU allocation ID: %d' % no_gpu)
train(conf)