-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
297 lines (218 loc) · 13.2 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
__all__ = ['get_data_annot_stats', 'resample_data', 'prepare_dataset_with_annotations', 'prepare_SEDF']
# for preprocessing Sleep-edf recordings.
# generate npy and memmap for both time-series and spectrogram
import pyedflib
import numpy as np
import pandas as pd
from pathlib import Path
from tqdm.auto import tqdm
import resampy
import warnings
from clinical_ts.stratify import stratify, stratify_batched
from clinical_ts.timeseries_utils import *
from scipy import signal
import math
import mne
warnings.simplefilter(action='ignore', category=FutureWarning)
data_path = '../../datasets/sedf' # path of raw dataset
target_folder = "../../dataprepro/sedf/ts" # path of preprocessed data
# target_folder_spectra = "../../dataprepro/sedf/spec"
ann_stoi_SEDF = {'Sleep stage W': 0, 'Sleep stage 1': 1, 'Sleep stage 2': 2, 'Sleep stage 3': 3, 'Sleep stage 4': 3, 'Sleep stage R': 4, 'Movement time': 5, 'Sleep stage ?': 6}
channel_to_use_SEDF = ['EEG Fpz-Cz', 'EEG Pz-Oz', 'EOG horizontal']
channel_to_resample_SEDF = ['EEG Fpz-Cz', 'EEG Pz-Oz', 'EOG horizontal']
target_fs = [100, 100, 100]
target_root = Path(target_folder)
#target_root_spectra = Path(target_folder_spectra)
def get_data_annot_stats(data_path, annotation=True, rhythm=True):
annFile_list = list(Path(data_path).glob('**/*-Hypnogram.edf'))
result = []
for filename in tqdm(list(Path(data_path).glob('**/*-PSG.edf'))):
f = pyedflib.EdfReader(str(filename))
try:
header = f.getSignalHeaders()
except:
print("Invalid file:", filename)
continue
f.close()
meta = {"filename": filename}
for key in header[0]:
item = [header[i][key] for i in range(len(header))]
meta.update({key: item})
meta.update({"sample_frequency": [i/30 for i in meta["sample_frequency"]]})
meta.update({"sample_rate": [i/30 for i in meta["sample_rate"]]})
if annotation:
if not Path(str(filename)).exists():
meta["symbol"] = []
if(rhythm):
meta["rhythm"] = []
else:
meta["aux_note"] = []
else:
for i, pt in enumerate(annFile_list):
if (str(filename)[:-9]) in str(pt):
f = mne.read_annotations(pt)
meta['SlstageID'], meta['Slstage'] = f.onset, f.description
meta["symbol"] = np.unique(meta['Slstage'])
continue
meta['channel'] = meta.pop('label')
result.append(meta)
df_stats = pd.DataFrame(result)
df_stats["eeg_id"] = df_stats.filename.apply(lambda x: x.stem[:-4])
if(annotation):
unique_symbols, unique_symbols_counts = np.unique([item for sublist in list(df_stats.symbol) for item in sublist], return_counts=True)
print("Sleep stage annotations:")
for us, usc in zip(unique_symbols, unique_symbols_counts):
print(us, usc)
return df_stats
# resampling selected channels,
def resample_data(sigbufs, channel_list, channel_to_resample, fs, target_fs):
for i, cl in enumerate(channel_to_resample):
if cl not in channel_list: # if there is a typo for inputting resampling channel names
print(f"No channel is with the name of '{cl}'")
quit()
else:
sigbufs[cl] = resampy.resample(sigbufs[cl], fs[i], target_fs[i]).astype(np.float32)
return sigbufs
def prepare_dataset_with_annotations(df_stats, ann_stoi, dataset_name="SEFD", discard_labels=[""], strat_folds=10, rhythm=True, create_segments=True, min_len_segments=100, drop_unk=False, target_fs=target_fs, channels=12, channel_to_resample = channel_to_resample_SEDF, target_folder=target_folder, recreate_data=True):
result = []
target_root = Path(target_folder) if target_folder is None else Path(target_folder)
target_root.mkdir(parents=True, exist_ok=True)
if(recreate_data is True):
metadata = []
metadata_single = []
for sample_id, row in tqdm(df_stats.iterrows(), total=len(df_stats)):
filename = row["filename"]
try:
f = pyedflib.EdfReader(str(filename))
channel_list = df_stats.loc[sample_id].loc['channel']
fs_all = df_stats.loc[sample_id].loc['sample_frequency']
sigbufs = {}
for item in channel_to_use_SEDF:
sigbufs[item] = f.readSignal(channel_list.index(item))
f.close()
except:
print("Invalid file:", filename)
continue
fs = [100, 100, 100]
data_dict = resample_data(sigbufs=sigbufs, channel_list=channel_list, channel_to_resample=channel_to_resample_SEDF, fs=fs, target_fs=target_fs)
data = np.zeros((len(data_dict[channel_to_resample[0]]), len(data_dict)), dtype=np.float32)
for i in range(len(data_dict)):
data[:, i] = data_dict[channel_to_resample[i]]
for e, item in enumerate(channel_list):
if item in channel_to_resample:
fs_all[e] = target_fs[channel_to_resample.index(item)]
df_stats['sample_frequency'].replace(df_stats['sample_frequency'][sample_id], fs_all)
df_stats['sample_rate'].replace(df_stats['sample_rate'][sample_id], fs_all)
meta = df_stats.iloc[sample_id]
ann_sample = np.array(df_stats.iloc[sample_id]['SlstageID']) # count from the second label/first label
ann_annotation = np.array(df_stats.iloc[sample_id]['Slstage'])
segments = []
segments_label = []
ID_move = []
count_move = 0
for i, (sym, sta) in enumerate(zip(ann_annotation, ann_sample)):
if i == 0 and ann_sample[1]-ann_sample[0] > 1800:
sta_temp = ann_sample[1]-1800 # time (second)
i_count = 0
while sta_temp + 30*i_count < ann_sample[i+1]:
staID = sta_temp*fs[0] + 30*fs[0]*i_count
segments.append(staID)
segments_label.append(ann_stoi[sym])
i_count += 1
if i == 0 and ann_sample[1]-ann_sample[0] <= 1800:
sta_temp = sta # time (second)
i_count = 0
while sta_temp + 30*i_count < ann_sample[i+1]:
staID = sta_temp*fs[0] + 30*fs[0]*i_count
segments.append(staID)
segments_label.append(ann_stoi[sym])
i_count += 1
if i>=1 and i < len(ann_sample)-2: # until the second last
sta_temp = ann_sample[i]
i_count = 0
while sta_temp + 30*i_count < ann_sample[i+1]:
staID = sta_temp*fs[0] + 30*fs[0]*i_count
segments.append(staID)
segments_label.append(ann_stoi[sym])
i_count += 1
if i == len(ann_sample)-2 : # the second last
if ann_annotation[i+1] == 'Sleep stage ?':
ann_sample_tempEnd = min(ann_sample[i+1], ann_sample[i]+1800)
sta_temp = ann_sample[i]
i_count = 0
while sta_temp + 30*i_count < ann_sample_tempEnd:
staID = sta_temp*fs[0] + 30*fs[0]*i_count
segments.append(staID)
segments_label.append(ann_stoi[sym])
i_count += 1
break
if ann_annotation[i+1] != 'Sleep stage ?':
sta_temp = ann_sample[i]
i_count = 0
while sta_temp + 30*i_count < ann_sample[i+1]:
staID = sta_temp*fs[0] + 30*fs[0]*i_count
segments.append(staID)
segments_label.append(ann_stoi[sym])
i_count += 1
if i == len(ann_sample)-1: # the last
sta_temp = ann_sample[i]
staID = sta_temp*fs[0]
segments.append(staID)
segments_label.append(ann_stoi[sym])
meta_temp = {"data": Path(filename.stem[:-4]+".npy"), "label": Path(filename.stem[:-4]+"_ann.npy"), "current_label": segments_label, "move_count":count_move, "ann_stoi": ann_stoi_SEDF, "ori_start_index": segments[0], "ori_end_index": segments[-1]+3000, "patient_id": row["patient_id"] if "patient_id" in df_stats.columns else sample_id}
meta_1 = meta_temp | dict(meta)
ID_whole = list(range(int(segments[0]), int((segments[-1]+3000))))
ID_chose = [ID for ID in ID_whole if ID not in ID_move]
np.save(target_root/(filename.stem[:-4]+".npy"), data[ID_chose])
np.save(target_root/(filename.stem[:-4]+"_ann.npy"), segments_label)
metadata.append(meta_1)
win_size = 2
overlap = 1
nfft = int(math.pow(2, math.ceil(math.log2(win_size * target_fs[0]))))
signals = np.pad(data[ID_chose], ((int(0.5*fs[0]), int(0.5*fs[0])), (0, 0)))
_, _, Zxx = signal.spectrogram(signals.T, fs=fs[0], window=signal.windows.hamming(win_size * fs[0]), noverlap=int(fs[0]*overlap), nfft=nfft)
eps = np.finfo(float).eps # get the smallest representable float value
Zxx_db = 20 * np.log10(np.abs(Zxx) + eps)
Zxx_db=np.moveaxis(Zxx_db,-1,0)
#np.save(target_root_spectra/(filename.stem[:-4]+".npy"), Zxx_db)
#np.save(target_root_spectra/(filename.stem[:-4]+"_ann.npy"), segments_label)
meta_whole = {"data": Path(filename.stem[:-4]+".npy"), "label": Path(filename.stem[:-4]+"_ann.npy"), "label_unique": np.unique(segments_label), "patient_id": row["patient_id"] if "patient_id" in df_stats.columns else sample_id}
metadata_single.append(meta_whole)
df = pd.DataFrame(metadata)
df_single = pd.DataFrame(metadata_single)
lbl_unique_single = np.unique([item for sublist in list(df_single["label_unique"]) for item in sublist])
df["dataset"] = dataset_name
df_patients = (df_single).groupby("patient_id")["label_unique"].apply(lambda x: list(x))
patients_ids = list(df_patients.index)
patients_labels = list(df_patients.apply(lambda x: [item for sublist in x for item in sublist]))
patients_num_ecgs = list(df_patients.apply(len))
stratified_ids = stratify(patients_labels, lbl_unique_single, [1./strat_folds]*strat_folds, samples_per_group=patients_num_ecgs)
stratified_patient_ids = [[patients_ids[i] for i in fold] for fold in stratified_ids]
df["strat_fold"]=-1
for i, split in enumerate(stratified_patient_ids):
df.loc[df.patient_id.isin(split), "strat_fold"] = i
lbl_itos = [""]*int(1+max(np.unique(list(ann_stoi.values()))))
for k in ann_stoi.keys():
lbl_itos[ann_stoi[k]]= k if lbl_itos[ann_stoi[k]]=="" else lbl_itos[ann_stoi[k]]+'|'+k
dataset_add_mean_col(df, data_folder=target_root)
dataset_add_std_col(df, data_folder=target_root)
dataset_add_length_col(df, data_folder=target_root)
#save means and stds
mean, std = dataset_get_stats(df)
save_dataset(df, lbl_itos, mean, std, target_root)
#save_dataset(df, lbl_itos, mean, std, target_root_spectra)
df.to_pickle(target_root/("df"+".pkl"), protocol=4)
#df.to_pickle(target_root_spectra/("df"+".pkl"), protocol=4)
return df, lbl_itos, mean, std
def prepare_SEDF(data_path, ann_stoi=ann_stoi_SEDF, create_segments=True, drop_unk=False, target_fs=target_fs, strat_folds=10, channels=2, channel_to_resample = channel_to_resample_SEDF, target_folder=target_folder, recreate_data=True):
print("Preparing dataset sedf.\nLoading dataset stats...")
df_stats = get_data_annot_stats(data_path)
df_stats["eeg_id"]=df_stats.filename.apply(lambda x: x.stem[:-4])
print("\n\nProcessing records...")
return prepare_dataset_with_annotations(df_stats, ann_stoi, dataset_name="SEDF", discard_labels=[""], rhythm=True, create_segments=create_segments, drop_unk=drop_unk, target_fs=target_fs, channel_to_resample=channel_to_resample_SEDF, target_folder=target_folder, recreate_data=recreate_data)
#################################################
prepare_SEDF(data_path, ann_stoi=ann_stoi_SEDF, create_segments=True, drop_unk=False, target_fs=target_fs, channels=2, channel_to_resample = channel_to_resample_SEDF, target_folder=target_folder, recreate_data=True)
df = pd.read_pickle(open(target_root/("df"+".pkl"), "rb"))
reformat_as_memmap(df, target_root/("memmap.npy"), data_folder=target_root, annotation=True, max_len=0, delete_npys=True, col_data="data", col_lbl="label", batch_length=0)
#df = pd.read_pickle(open(target_root_spectra/("df"+".pkl"), "rb"))
#reformat_as_memmap(df, target_root_spectra/("memmap.npy"), data_folder=target_root_spectra, annotation=True, max_len=0, delete_npys=True, col_data="data", col_lbl="label", batch_length=0)