-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattack.py
95 lines (80 loc) · 3.42 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import logging
from typing import Dict
import torch
from copy import deepcopy
import numpy as np
from models.model import Model
from synthesizers.synthesizer import Synthesizer
from losses.loss_functions import compute_all_losses_and_grads
from utils.min_norm_solvers import MGDASolver
from utils.parameters import Params
logger = logging.getLogger('logger')
class Attack:
params: Params
synthesizer: Synthesizer
nc_model: Model
nc_optim: torch.optim.Optimizer
loss_hist = list()
# fixed_model: Model
def __init__(self, params, synthesizer):
self.params = params
self.synthesizer = synthesizer
def compute_blind_loss(self, model, criterion, batch, attack, ratio=None):
"""
:param model:
:param criterion:
:param batch:
:param attack: Do not attack at all. Ignore all the parameters
:return:
"""
batch = batch.clip(self.params.clip_batch)
loss_tasks = self.params.loss_tasks.copy() if attack else ['normal']
batch_back = self.synthesizer.make_backdoor_batch(batch, attack=attack, ratio=ratio)
scale = dict()
if self.params.loss_threshold and (np.mean(self.loss_hist) >= self.params.loss_threshold
or len(self.loss_hist) < 1000):
loss_tasks = ['normal']
if len(loss_tasks) == 1:
loss_values, grads = compute_all_losses_and_grads(
loss_tasks,
self, model, criterion, batch, batch_back, compute_grad=False
)
elif self.params.loss_balance == 'MGDA':
loss_values, grads = compute_all_losses_and_grads(
loss_tasks,
self, model, criterion, batch, batch_back, compute_grad=True)
if len(loss_tasks) > 1:
scale = MGDASolver.get_scales(grads, loss_values,
self.params.mgda_normalize,
loss_tasks)
elif self.params.loss_balance == 'fixed':
loss_values, grads = compute_all_losses_and_grads(
loss_tasks,
self, model, criterion, batch, batch_back, compute_grad=False)
for t in loss_tasks:
scale[t] = self.params.fixed_scales[t]
else:
raise ValueError(f'Please choose between `MGDA` and `fixed`.')
if len(loss_tasks) == 1:
scale = {loss_tasks[0]: 1.0}
self.loss_hist.append(loss_values[list(loss_values.keys())[0]].item())
self.loss_hist = self.loss_hist[-1000:]
blind_loss = self.scale_losses(loss_tasks, loss_values, scale)
return blind_loss
def scale_losses(self, loss_tasks, loss_values, scale):
blind_loss = 0
for it, t in enumerate(loss_tasks):
self.params.running_losses[t].append(loss_values[t].item())
self.params.running_scales[t].append(scale[t])
if it == 0:
blind_loss = scale[t] * loss_values[t]
else:
blind_loss += scale[t] * loss_values[t]
self.params.running_losses['total'].append(blind_loss.item())
return blind_loss
def fl_scale_update(self, local_update: Dict[str, torch.Tensor], scale=None):
for name, value in local_update.items():
if scale is None:
value.mul_(self.params.fl_weight_scale)
else:
value.mul_(scale)