-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss_batch.txt
785 lines (785 loc) · 44.2 KB
/
loss_batch.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
epoch_loss-- 1 tensor(0.1080, device='cuda:0')
epoch_loss-- 2 tensor(0.1107, device='cuda:0')
epoch_loss-- 3 tensor(0.1087, device='cuda:0')
epoch_loss-- 4 tensor(0.1094, device='cuda:0')
epoch_loss-- 5 tensor(0.1090, device='cuda:0')
epoch_loss-- 6 tensor(0.1078, device='cuda:0')
epoch_loss-- 7 tensor(0.1090, device='cuda:0')
epoch_loss-- 8 tensor(0.1087, device='cuda:0')
epoch_loss-- 9 tensor(0.1101, device='cuda:0')
epoch_loss-- 10 tensor(0.1065, device='cuda:0')
epoch_loss-- 11 tensor(0.1066, device='cuda:0')
epoch_loss-- 12 tensor(0.1082, device='cuda:0')
epoch_loss-- 13 tensor(0.1055, device='cuda:0')
epoch_loss-- 14 tensor(0.1057, device='cuda:0')
epoch_loss-- 15 tensor(0.1070, device='cuda:0')
epoch_loss-- 16 tensor(0.1049, device='cuda:0')
epoch_loss-- 17 tensor(0.1078, device='cuda:0')
epoch_loss-- 18 tensor(0.1078, device='cuda:0')
epoch_loss-- 19 tensor(0.1047, device='cuda:0')
epoch_loss-- 20 tensor(0.1047, device='cuda:0')
epoch_loss-- 21 tensor(0.1056, device='cuda:0')
epoch_loss-- 22 tensor(0.1044, device='cuda:0')
epoch_loss-- 23 tensor(0.1064, device='cuda:0')
epoch_loss-- 24 tensor(0.1051, device='cuda:0')
epoch_loss-- 25 tensor(0.1035, device='cuda:0')
epoch_loss-- 26 tensor(0.1065, device='cuda:0')
epoch_loss-- 27 tensor(0.1041, device='cuda:0')
epoch_loss-- 28 tensor(0.1038, device='cuda:0')
epoch_loss-- 29 tensor(0.1035, device='cuda:0')
epoch_loss-- 30 tensor(0.1037, device='cuda:0')
epoch_loss-- 31 tensor(0.1014, device='cuda:0')
epoch_loss-- 32 tensor(0.1013, device='cuda:0')
epoch_loss-- 33 tensor(0.1011, device='cuda:0')
epoch_loss-- 34 tensor(0.1021, device='cuda:0')
epoch_loss-- 35 tensor(0.1015, device='cuda:0')
epoch_loss-- 36 tensor(0.1007, device='cuda:0')
epoch_loss-- 37 tensor(0.1019, device='cuda:0')
epoch_loss-- 38 tensor(0.1005, device='cuda:0')
epoch_loss-- 39 tensor(0.0993, device='cuda:0')
epoch_loss-- 40 tensor(0.1028, device='cuda:0')
epoch_loss-- 41 tensor(0.1010, device='cuda:0')
epoch_loss-- 42 tensor(0.1002, device='cuda:0')
epoch_loss-- 43 tensor(0.0997, device='cuda:0')
epoch_loss-- 44 tensor(0.0982, device='cuda:0')
epoch_loss-- 45 tensor(0.1014, device='cuda:0')
epoch_loss-- 46 tensor(0.0996, device='cuda:0')
epoch_loss-- 47 tensor(0.0967, device='cuda:0')
epoch_loss-- 48 tensor(0.0976, device='cuda:0')
epoch_loss-- 49 tensor(0.0970, device='cuda:0')
epoch_loss-- 50 tensor(0.0977, device='cuda:0')
epoch_loss-- 51 tensor(0.0956, device='cuda:0')
epoch_loss-- 52 tensor(0.0979, device='cuda:0')
epoch_loss-- 53 tensor(0.0980, device='cuda:0')
epoch_loss-- 54 tensor(0.0953, device='cuda:0')
epoch_loss-- 55 tensor(0.0975, device='cuda:0')
epoch_loss-- 56 tensor(0.0975, device='cuda:0')
epoch_loss-- 57 tensor(0.0958, device='cuda:0')
epoch_loss-- 58 tensor(0.0974, device='cuda:0')
epoch_loss-- 59 tensor(0.0964, device='cuda:0')
epoch_loss-- 60 tensor(0.0955, device='cuda:0')
epoch_loss-- 61 tensor(0.0976, device='cuda:0')
epoch_loss-- 62 tensor(0.0962, device='cuda:0')
epoch_loss-- 63 tensor(0.0951, device='cuda:0')
epoch_loss-- 64 tensor(0.0943, device='cuda:0')
epoch_loss-- 65 tensor(0.0951, device='cuda:0')
epoch_loss-- 66 tensor(0.0932, device='cuda:0')
epoch_loss-- 67 tensor(0.0944, device='cuda:0')
epoch_loss-- 68 tensor(0.0941, device='cuda:0')
epoch_loss-- 69 tensor(0.0949, device='cuda:0')
epoch_loss-- 70 tensor(0.0923, device='cuda:0')
epoch_loss-- 71 tensor(0.0940, device='cuda:0')
epoch_loss-- 72 tensor(0.0929, device='cuda:0')
epoch_loss-- 73 tensor(0.0917, device='cuda:0')
epoch_loss-- 74 tensor(0.0931, device='cuda:0')
epoch_loss-- 75 tensor(0.0914, device='cuda:0')
epoch_loss-- 76 tensor(0.0930, device='cuda:0')
epoch_loss-- 77 tensor(0.0920, device='cuda:0')
epoch_loss-- 78 tensor(0.0900, device='cuda:0')
epoch_loss-- 79 tensor(0.0934, device='cuda:0')
epoch_loss-- 80 tensor(0.0902, device='cuda:0')
epoch_loss-- 81 tensor(0.0919, device='cuda:0')
epoch_loss-- 82 tensor(0.0899, device='cuda:0')
epoch_loss-- 83 tensor(0.0924, device='cuda:0')
epoch_loss-- 84 tensor(0.0900, device='cuda:0')
epoch_loss-- 85 tensor(0.0879, device='cuda:0')
epoch_loss-- 86 tensor(0.0878, device='cuda:0')
epoch_loss-- 87 tensor(0.0912, device='cuda:0')
epoch_loss-- 88 tensor(0.0898, device='cuda:0')
epoch_loss-- 89 tensor(0.0900, device='cuda:0')
epoch_loss-- 90 tensor(0.0896, device='cuda:0')
epoch_loss-- 91 tensor(0.0896, device='cuda:0')
epoch_loss-- 92 tensor(0.0875, device='cuda:0')
epoch_loss-- 93 tensor(0.0884, device='cuda:0')
epoch_loss-- 94 tensor(0.0898, device='cuda:0')
epoch_loss-- 95 tensor(0.0876, device='cuda:0')
epoch_loss-- 96 tensor(0.0871, device='cuda:0')
epoch_loss-- 97 tensor(0.0859, device='cuda:0')
epoch_loss-- 98 tensor(0.0872, device='cuda:0')
epoch_loss-- 99 tensor(0.0875, device='cuda:0')
epoch_loss-- 100 tensor(0.0869, device='cuda:0')
epoch_loss-- 1 tensor(0.1213, device='cuda:0')
epoch_loss-- 2 tensor(0.1206, device='cuda:0')
epoch_loss-- 3 tensor(0.1221, device='cuda:0')
epoch_loss-- 4 tensor(0.1205, device='cuda:0')
epoch_loss-- 5 tensor(0.1178, device='cuda:0')
epoch_loss-- 6 tensor(0.1174, device='cuda:0')
epoch_loss-- 7 tensor(0.1157, device='cuda:0')
epoch_loss-- 8 tensor(0.1178, device='cuda:0')
epoch_loss-- 9 tensor(0.1138, device='cuda:0')
epoch_loss-- 10 tensor(0.1131, device='cuda:0')
epoch_loss-- 11 tensor(0.1129, device='cuda:0')
epoch_loss-- 12 tensor(0.1124, device='cuda:0')
epoch_loss-- 13 tensor(0.1134, device='cuda:0')
epoch_loss-- 14 tensor(0.1121, device='cuda:0')
epoch_loss-- 15 tensor(0.1120, device='cuda:0')
epoch_loss-- 16 tensor(0.1136, device='cuda:0')
epoch_loss-- 17 tensor(0.1136, device='cuda:0')
epoch_loss-- 18 tensor(0.1127, device='cuda:0')
epoch_loss-- 19 tensor(0.1115, device='cuda:0')
epoch_loss-- 20 tensor(0.1118, device='cuda:0')
epoch_loss-- 21 tensor(0.1107, device='cuda:0')
epoch_loss-- 22 tensor(0.1099, device='cuda:0')
epoch_loss-- 23 tensor(0.1096, device='cuda:0')
epoch_loss-- 24 tensor(0.1088, device='cuda:0')
epoch_loss-- 25 tensor(0.1094, device='cuda:0')
epoch_loss-- 26 tensor(0.1078, device='cuda:0')
epoch_loss-- 27 tensor(0.1066, device='cuda:0')
epoch_loss-- 28 tensor(0.1058, device='cuda:0')
epoch_loss-- 29 tensor(0.1076, device='cuda:0')
epoch_loss-- 30 tensor(0.1067, device='cuda:0')
epoch_loss-- 31 tensor(0.1082, device='cuda:0')
epoch_loss-- 32 tensor(0.1070, device='cuda:0')
epoch_loss-- 33 tensor(0.1068, device='cuda:0')
epoch_loss-- 34 tensor(0.1072, device='cuda:0')
epoch_loss-- 35 tensor(0.1056, device='cuda:0')
epoch_loss-- 36 tensor(0.1068, device='cuda:0')
epoch_loss-- 37 tensor(0.1026, device='cuda:0')
epoch_loss-- 38 tensor(0.1054, device='cuda:0')
epoch_loss-- 39 tensor(0.1061, device='cuda:0')
epoch_loss-- 40 tensor(0.1034, device='cuda:0')
epoch_loss-- 41 tensor(0.1037, device='cuda:0')
epoch_loss-- 42 tensor(0.1052, device='cuda:0')
epoch_loss-- 43 tensor(0.1050, device='cuda:0')
epoch_loss-- 44 tensor(0.1031, device='cuda:0')
epoch_loss-- 45 tensor(0.1030, device='cuda:0')
epoch_loss-- 46 tensor(0.1052, device='cuda:0')
epoch_loss-- 47 tensor(0.1034, device='cuda:0')
epoch_loss-- 48 tensor(0.1029, device='cuda:0')
epoch_loss-- 49 tensor(0.1026, device='cuda:0')
epoch_loss-- 1 tensor(0.1174, device='cuda:0')
epoch_loss-- 2 tensor(0.1128, device='cuda:0')
epoch_loss-- 3 tensor(0.1084, device='cuda:0')
epoch_loss-- 4 tensor(0.1079, device='cuda:0')
epoch_loss-- 5 tensor(0.1066, device='cuda:0')
epoch_loss-- 6 tensor(0.1068, device='cuda:0')
epoch_loss-- 7 tensor(0.1054, device='cuda:0')
epoch_loss-- 8 tensor(0.1048, device='cuda:0')
epoch_loss-- 9 tensor(0.1046, device='cuda:0')
epoch_loss-- 10 tensor(0.1037, device='cuda:0')
epoch_loss-- 11 tensor(0.1040, device='cuda:0')
epoch_loss-- 12 tensor(0.1034, device='cuda:0')
epoch_loss-- 13 tensor(0.1030, device='cuda:0')
epoch_loss-- 14 tensor(0.1009, device='cuda:0')
epoch_loss-- 15 tensor(0.1043, device='cuda:0')
epoch_loss-- 16 tensor(0.1025, device='cuda:0')
epoch_loss-- 17 tensor(0.1024, device='cuda:0')
epoch_loss-- 18 tensor(0.1034, device='cuda:0')
epoch_loss-- 19 tensor(0.1033, device='cuda:0')
epoch_loss-- 20 tensor(0.1018, device='cuda:0')
epoch_loss-- 21 tensor(0.0998, device='cuda:0')
epoch_loss-- 22 tensor(0.0987, device='cuda:0')
epoch_loss-- 23 tensor(0.0997, device='cuda:0')
epoch_loss-- 24 tensor(0.0982, device='cuda:0')
epoch_loss-- 25 tensor(0.0992, device='cuda:0')
epoch_loss-- 26 tensor(0.1000, device='cuda:0')
epoch_loss-- 27 tensor(0.1003, device='cuda:0')
epoch_loss-- 28 tensor(0.0991, device='cuda:0')
epoch_loss-- 29 tensor(0.0996, device='cuda:0')
epoch_loss-- 30 tensor(0.0984, device='cuda:0')
epoch_loss-- 31 tensor(0.0988, device='cuda:0')
epoch_loss-- 32 tensor(0.0981, device='cuda:0')
epoch_loss-- 33 tensor(0.0972, device='cuda:0')
epoch_loss-- 34 tensor(0.0963, device='cuda:0')
epoch_loss-- 35 tensor(0.0999, device='cuda:0')
epoch_loss-- 36 tensor(0.0982, device='cuda:0')
epoch_loss-- 37 tensor(0.0972, device='cuda:0')
epoch_loss-- 38 tensor(0.0979, device='cuda:0')
epoch_loss-- 39 tensor(0.0994, device='cuda:0')
epoch_loss-- 40 tensor(0.0969, device='cuda:0')
epoch_loss-- 41 tensor(0.0966, device='cuda:0')
epoch_loss-- 42 tensor(0.0965, device='cuda:0')
epoch_loss-- 43 tensor(0.0962, device='cuda:0')
epoch_loss-- 44 tensor(0.0976, device='cuda:0')
epoch_loss-- 45 tensor(0.0970, device='cuda:0')
epoch_loss-- 46 tensor(0.0966, device='cuda:0')
epoch_loss-- 47 tensor(0.0958, device='cuda:0')
epoch_loss-- 48 tensor(0.0952, device='cuda:0')
epoch_loss-- 49 tensor(0.0967, device='cuda:0')
epoch_loss-- 50 tensor(0.0963, device='cuda:0')
epoch_loss-- 51 tensor(0.0963, device='cuda:0')
epoch_loss-- 52 tensor(0.0965, device='cuda:0')
epoch_loss-- 53 tensor(0.0961, device='cuda:0')
epoch_loss-- 54 tensor(0.0954, device='cuda:0')
epoch_loss-- 55 tensor(0.0955, device='cuda:0')
epoch_loss-- 56 tensor(0.0955, device='cuda:0')
epoch_loss-- 57 tensor(0.0948, device='cuda:0')
epoch_loss-- 58 tensor(0.0936, device='cuda:0')
epoch_loss-- 59 tensor(0.0948, device='cuda:0')
epoch_loss-- 60 tensor(0.0952, device='cuda:0')
epoch_loss-- 61 tensor(0.0950, device='cuda:0')
epoch_loss-- 62 tensor(0.0964, device='cuda:0')
epoch_loss-- 63 tensor(0.0947, device='cuda:0')
epoch_loss-- 64 tensor(0.0941, device='cuda:0')
epoch_loss-- 65 tensor(0.0934, device='cuda:0')
epoch_loss-- 66 tensor(0.0930, device='cuda:0')
epoch_loss-- 67 tensor(0.0944, device='cuda:0')
epoch_loss-- 68 tensor(0.0957, device='cuda:0')
epoch_loss-- 69 tensor(0.0959, device='cuda:0')
epoch_loss-- 70 tensor(0.0948, device='cuda:0')
epoch_loss-- 71 tensor(0.0942, device='cuda:0')
epoch_loss-- 72 tensor(0.0927, device='cuda:0')
epoch_loss-- 73 tensor(0.0942, device='cuda:0')
epoch_loss-- 74 tensor(0.0949, device='cuda:0')
epoch_loss-- 75 tensor(0.0933, device='cuda:0')
epoch_loss-- 76 tensor(0.0925, device='cuda:0')
epoch_loss-- 77 tensor(0.0925, device='cuda:0')
epoch_loss-- 78 tensor(0.0929, device='cuda:0')
epoch_loss-- 79 tensor(0.0929, device='cuda:0')
epoch_loss-- 80 tensor(0.0938, device='cuda:0')
epoch_loss-- 81 tensor(0.0906, device='cuda:0')
epoch_loss-- 82 tensor(0.0925, device='cuda:0')
epoch_loss-- 83 tensor(0.0941, device='cuda:0')
epoch_loss-- 84 tensor(0.0943, device='cuda:0')
epoch_loss-- 85 tensor(0.0936, device='cuda:0')
epoch_loss-- 86 tensor(0.0926, device='cuda:0')
epoch_loss-- 87 tensor(0.0927, device='cuda:0')
epoch_loss-- 88 tensor(0.0919, device='cuda:0')
epoch_loss-- 89 tensor(0.0920, device='cuda:0')
epoch_loss-- 90 tensor(0.0920, device='cuda:0')
epoch_loss-- 91 tensor(0.0933, device='cuda:0')
epoch_loss-- 92 tensor(0.0929, device='cuda:0')
epoch_loss-- 93 tensor(0.0917, device='cuda:0')
epoch_loss-- 94 tensor(0.0934, device='cuda:0')
epoch_loss-- 95 tensor(0.0913, device='cuda:0')
epoch_loss-- 96 tensor(0.0920, device='cuda:0')
epoch_loss-- 97 tensor(0.0920, device='cuda:0')
epoch_loss-- 98 tensor(0.0914, device='cuda:0')
epoch_loss-- 99 tensor(0.0920, device='cuda:0')
epoch_loss-- 100 tensor(0.0934, device='cuda:0')
epoch_loss-- 101 tensor(0.0918, device='cuda:0')
epoch_loss-- 102 tensor(0.0923, device='cuda:0')
epoch_loss-- 103 tensor(0.0905, device='cuda:0')
epoch_loss-- 104 tensor(0.0930, device='cuda:0')
epoch_loss-- 105 tensor(0.0908, device='cuda:0')
epoch_loss-- 106 tensor(0.0900, device='cuda:0')
epoch_loss-- 107 tensor(0.0902, device='cuda:0')
epoch_loss-- 108 tensor(0.0895, device='cuda:0')
epoch_loss-- 109 tensor(0.0891, device='cuda:0')
epoch_loss-- 110 tensor(0.0919, device='cuda:0')
epoch_loss-- 111 tensor(0.0910, device='cuda:0')
epoch_loss-- 112 tensor(0.0919, device='cuda:0')
epoch_loss-- 113 tensor(0.0889, device='cuda:0')
epoch_loss-- 114 tensor(0.0914, device='cuda:0')
epoch_loss-- 115 tensor(0.0902, device='cuda:0')
epoch_loss-- 116 tensor(0.0912, device='cuda:0')
epoch_loss-- 117 tensor(0.0907, device='cuda:0')
epoch_loss-- 118 tensor(0.0908, device='cuda:0')
epoch_loss-- 119 tensor(0.0902, device='cuda:0')
epoch_loss-- 120 tensor(0.0910, device='cuda:0')
epoch_loss-- 121 tensor(0.0895, device='cuda:0')
epoch_loss-- 122 tensor(0.0900, device='cuda:0')
epoch_loss-- 123 tensor(0.0925, device='cuda:0')
epoch_loss-- 124 tensor(0.0904, device='cuda:0')
epoch_loss-- 125 tensor(0.0897, device='cuda:0')
epoch_loss-- 126 tensor(0.0900, device='cuda:0')
epoch_loss-- 127 tensor(0.0896, device='cuda:0')
epoch_loss-- 128 tensor(0.0895, device='cuda:0')
epoch_loss-- 129 tensor(0.0888, device='cuda:0')
epoch_loss-- 130 tensor(0.0898, device='cuda:0')
epoch_loss-- 131 tensor(0.0916, device='cuda:0')
epoch_loss-- 132 tensor(0.0913, device='cuda:0')
epoch_loss-- 133 tensor(0.0917, device='cuda:0')
epoch_loss-- 134 tensor(0.0876, device='cuda:0')
epoch_loss-- 135 tensor(0.0884, device='cuda:0')
epoch_loss-- 136 tensor(0.0896, device='cuda:0')
epoch_loss-- 137 tensor(0.0891, device='cuda:0')
epoch_loss-- 138 tensor(0.0899, device='cuda:0')
epoch_loss-- 139 tensor(0.0896, device='cuda:0')
epoch_loss-- 140 tensor(0.0887, device='cuda:0')
epoch_loss-- 141 tensor(0.0897, device='cuda:0')
epoch_loss-- 142 tensor(0.0909, device='cuda:0')
epoch_loss-- 143 tensor(0.0893, device='cuda:0')
epoch_loss-- 144 tensor(0.0885, device='cuda:0')
epoch_loss-- 145 tensor(0.0884, device='cuda:0')
epoch_loss-- 146 tensor(0.0896, device='cuda:0')
epoch_loss-- 147 tensor(0.0886, device='cuda:0')
epoch_loss-- 148 tensor(0.0883, device='cuda:0')
epoch_loss-- 149 tensor(0.0893, device='cuda:0')
epoch_loss-- 150 tensor(0.0900, device='cuda:0')
epoch_loss-- 151 tensor(0.0883, device='cuda:0')
epoch_loss-- 152 tensor(0.0889, device='cuda:0')
epoch_loss-- 153 tensor(0.0901, device='cuda:0')
epoch_loss-- 154 tensor(0.0897, device='cuda:0')
epoch_loss-- 155 tensor(0.0873, device='cuda:0')
epoch_loss-- 156 tensor(0.0882, device='cuda:0')
epoch_loss-- 157 tensor(0.0880, device='cuda:0')
epoch_loss-- 158 tensor(0.0886, device='cuda:0')
epoch_loss-- 159 tensor(0.0885, device='cuda:0')
epoch_loss-- 160 tensor(0.0877, device='cuda:0')
epoch_loss-- 161 tensor(0.0878, device='cuda:0')
epoch_loss-- 162 tensor(0.0888, device='cuda:0')
epoch_loss-- 163 tensor(0.0868, device='cuda:0')
epoch_loss-- 164 tensor(0.0860, device='cuda:0')
epoch_loss-- 165 tensor(0.0866, device='cuda:0')
epoch_loss-- 166 tensor(0.0887, device='cuda:0')
epoch_loss-- 167 tensor(0.0896, device='cuda:0')
epoch_loss-- 168 tensor(0.0877, device='cuda:0')
epoch_loss-- 169 tensor(0.0883, device='cuda:0')
epoch_loss-- 170 tensor(0.0892, device='cuda:0')
epoch_loss-- 171 tensor(0.0879, device='cuda:0')
epoch_loss-- 172 tensor(0.0870, device='cuda:0')
epoch_loss-- 173 tensor(0.0870, device='cuda:0')
epoch_loss-- 174 tensor(0.0883, device='cuda:0')
epoch_loss-- 175 tensor(0.0883, device='cuda:0')
epoch_loss-- 176 tensor(0.0879, device='cuda:0')
epoch_loss-- 177 tensor(0.0862, device='cuda:0')
epoch_loss-- 178 tensor(0.0857, device='cuda:0')
epoch_loss-- 179 tensor(0.0870, device='cuda:0')
epoch_loss-- 180 tensor(0.0858, device='cuda:0')
epoch_loss-- 181 tensor(0.0871, device='cuda:0')
epoch_loss-- 182 tensor(0.0863, device='cuda:0')
epoch_loss-- 183 tensor(0.0885, device='cuda:0')
epoch_loss-- 184 tensor(0.0876, device='cuda:0')
epoch_loss-- 185 tensor(0.0875, device='cuda:0')
epoch_loss-- 186 tensor(0.0865, device='cuda:0')
epoch_loss-- 187 tensor(0.0878, device='cuda:0')
epoch_loss-- 188 tensor(0.0870, device='cuda:0')
epoch_loss-- 189 tensor(0.0861, device='cuda:0')
epoch_loss-- 190 tensor(0.0868, device='cuda:0')
epoch_loss-- 191 tensor(0.0875, device='cuda:0')
epoch_loss-- 192 tensor(0.0865, device='cuda:0')
epoch_loss-- 193 tensor(0.0861, device='cuda:0')
epoch_loss-- 194 tensor(0.0856, device='cuda:0')
epoch_loss-- 195 tensor(0.0854, device='cuda:0')
epoch_loss-- 196 tensor(0.0866, device='cuda:0')
epoch_loss-- 197 tensor(0.0871, device='cuda:0')
epoch_loss-- 198 tensor(0.0869, device='cuda:0')
epoch_loss-- 199 tensor(0.0881, device='cuda:0')
epoch_loss-- 200 tensor(0.0880, device='cuda:0')
epoch_loss-- 201 tensor(0.0855, device='cuda:0')
epoch_loss-- 202 tensor(0.0850, device='cuda:0')
epoch_loss-- 203 tensor(0.0863, device='cuda:0')
epoch_loss-- 204 tensor(0.0858, device='cuda:0')
epoch_loss-- 205 tensor(0.0849, device='cuda:0')
epoch_loss-- 206 tensor(0.0847, device='cuda:0')
epoch_loss-- 207 tensor(0.0857, device='cuda:0')
epoch_loss-- 208 tensor(0.0851, device='cuda:0')
epoch_loss-- 209 tensor(0.0845, device='cuda:0')
epoch_loss-- 210 tensor(0.0841, device='cuda:0')
epoch_loss-- 211 tensor(0.0862, device='cuda:0')
epoch_loss-- 212 tensor(0.0862, device='cuda:0')
epoch_loss-- 213 tensor(0.0866, device='cuda:0')
epoch_loss-- 214 tensor(0.0860, device='cuda:0')
epoch_loss-- 215 tensor(0.0855, device='cuda:0')
epoch_loss-- 216 tensor(0.0853, device='cuda:0')
epoch_loss-- 217 tensor(0.0855, device='cuda:0')
epoch_loss-- 218 tensor(0.0848, device='cuda:0')
epoch_loss-- 219 tensor(0.0850, device='cuda:0')
epoch_loss-- 220 tensor(0.0839, device='cuda:0')
epoch_loss-- 221 tensor(0.0858, device='cuda:0')
epoch_loss-- 222 tensor(0.0844, device='cuda:0')
epoch_loss-- 223 tensor(0.0832, device='cuda:0')
epoch_loss-- 224 tensor(0.0841, device='cuda:0')
epoch_loss-- 225 tensor(0.0848, device='cuda:0')
epoch_loss-- 226 tensor(0.0861, device='cuda:0')
epoch_loss-- 227 tensor(0.0849, device='cuda:0')
epoch_loss-- 228 tensor(0.0869, device='cuda:0')
epoch_loss-- 229 tensor(0.0837, device='cuda:0')
epoch_loss-- 230 tensor(0.0832, device='cuda:0')
epoch_loss-- 231 tensor(0.0841, device='cuda:0')
epoch_loss-- 232 tensor(0.0825, device='cuda:0')
epoch_loss-- 233 tensor(0.0849, device='cuda:0')
epoch_loss-- 234 tensor(0.0824, device='cuda:0')
epoch_loss-- 235 tensor(0.0848, device='cuda:0')
epoch_loss-- 236 tensor(0.0842, device='cuda:0')
epoch_loss-- 1 tensor(0.2195, device='cuda:0')
epoch_loss-- 2 tensor(0.1908, device='cuda:0')
epoch_loss-- 3 tensor(0.1998, device='cuda:0')
epoch_loss-- 4 tensor(0.2042, device='cuda:0')
epoch_loss-- 5 tensor(0.1984, device='cuda:0')
epoch_loss-- 6 tensor(0.2063, device='cuda:0')
epoch_loss-- 7 tensor(0.2036, device='cuda:0')
epoch_loss-- 8 tensor(0.1916, device='cuda:0')
epoch_loss-- 9 tensor(0.1938, device='cuda:0')
epoch_loss-- 10 tensor(0.1989, device='cuda:0')
epoch_loss-- 11 tensor(0.1921, device='cuda:0')
epoch_loss-- 12 tensor(0.1913, device='cuda:0')
epoch_loss-- 13 tensor(0.1889, device='cuda:0')
epoch_loss-- 14 tensor(0.1901, device='cuda:0')
epoch_loss-- 15 tensor(0.1937, device='cuda:0')
epoch_loss-- 16 tensor(0.1888, device='cuda:0')
epoch_loss-- 17 tensor(0.1892, device='cuda:0')
epoch_loss-- 18 tensor(0.1954, device='cuda:0')
epoch_loss-- 19 tensor(0.1863, device='cuda:0')
epoch_loss-- 20 tensor(0.1848, device='cuda:0')
epoch_loss-- 21 tensor(0.1836, device='cuda:0')
epoch_loss-- 22 tensor(0.1814, device='cuda:0')
epoch_loss-- 23 tensor(0.1875, device='cuda:0')
epoch_loss-- 24 tensor(0.1816, device='cuda:0')
epoch_loss-- 25 tensor(0.1842, device='cuda:0')
epoch_loss-- 26 tensor(0.1839, device='cuda:0')
epoch_loss-- 27 tensor(0.1830, device='cuda:0')
epoch_loss-- 28 tensor(0.1742, device='cuda:0')
epoch_loss-- 29 tensor(0.1814, device='cuda:0')
epoch_loss-- 30 tensor(0.1686, device='cuda:0')
epoch_loss-- 31 tensor(0.1816, device='cuda:0')
epoch_loss-- 32 tensor(0.1847, device='cuda:0')
epoch_loss-- 33 tensor(0.1805, device='cuda:0')
epoch_loss-- 34 tensor(0.1734, device='cuda:0')
epoch_loss-- 35 tensor(0.1798, device='cuda:0')
epoch_loss-- 36 tensor(0.1748, device='cuda:0')
epoch_loss-- 37 tensor(0.1780, device='cuda:0')
epoch_loss-- 38 tensor(0.1813, device='cuda:0')
epoch_loss-- 39 tensor(0.1717, device='cuda:0')
epoch_loss-- 40 tensor(0.1693, device='cuda:0')
epoch_loss-- 41 tensor(0.1762, device='cuda:0')
epoch_loss-- 42 tensor(0.1711, device='cuda:0')
epoch_loss-- 43 tensor(0.1713, device='cuda:0')
epoch_loss-- 44 tensor(0.1842, device='cuda:0')
epoch_loss-- 45 tensor(0.1701, device='cuda:0')
epoch_loss-- 46 tensor(0.1635, device='cuda:0')
epoch_loss-- 47 tensor(0.1672, device='cuda:0')
epoch_loss-- 48 tensor(0.1668, device='cuda:0')
epoch_loss-- 49 tensor(0.1683, device='cuda:0')
epoch_loss-- 50 tensor(0.1677, device='cuda:0')
epoch_loss-- 51 tensor(0.1576, device='cuda:0')
epoch_loss-- 52 tensor(0.1622, device='cuda:0')
epoch_loss-- 53 tensor(0.1599, device='cuda:0')
epoch_loss-- 54 tensor(0.1650, device='cuda:0')
epoch_loss-- 55 tensor(0.1671, device='cuda:0')
epoch_loss-- 56 tensor(0.1652, device='cuda:0')
epoch_loss-- 57 tensor(0.1628, device='cuda:0')
epoch_loss-- 58 tensor(0.1632, device='cuda:0')
epoch_loss-- 59 tensor(0.1565, device='cuda:0')
epoch_loss-- 60 tensor(0.1640, device='cuda:0')
epoch_loss-- 61 tensor(0.1517, device='cuda:0')
epoch_loss-- 62 tensor(0.1604, device='cuda:0')
epoch_loss-- 63 tensor(0.1552, device='cuda:0')
epoch_loss-- 64 tensor(0.1500, device='cuda:0')
epoch_loss-- 65 tensor(0.1580, device='cuda:0')
epoch_loss-- 66 tensor(0.1470, device='cuda:0')
epoch_loss-- 67 tensor(0.1397, device='cuda:0')
epoch_loss-- 68 tensor(0.1566, device='cuda:0')
epoch_loss-- 69 tensor(0.1507, device='cuda:0')
epoch_loss-- 70 tensor(0.1529, device='cuda:0')
epoch_loss-- 71 tensor(0.1556, device='cuda:0')
epoch_loss-- 72 tensor(0.1474, device='cuda:0')
epoch_loss-- 73 tensor(0.1479, device='cuda:0')
epoch_loss-- 74 tensor(0.1491, device='cuda:0')
epoch_loss-- 75 tensor(0.1453, device='cuda:0')
epoch_loss-- 76 tensor(0.1532, device='cuda:0')
epoch_loss-- 77 tensor(0.1393, device='cuda:0')
epoch_loss-- 78 tensor(0.1482, device='cuda:0')
epoch_loss-- 79 tensor(0.1408, device='cuda:0')
epoch_loss-- 80 tensor(0.1395, device='cuda:0')
epoch_loss-- 81 tensor(0.1470, device='cuda:0')
epoch_loss-- 82 tensor(0.1503, device='cuda:0')
epoch_loss-- 83 tensor(0.1388, device='cuda:0')
epoch_loss-- 84 tensor(0.1359, device='cuda:0')
epoch_loss-- 85 tensor(0.1410, device='cuda:0')
epoch_loss-- 86 tensor(0.1382, device='cuda:0')
epoch_loss-- 87 tensor(0.1385, device='cuda:0')
epoch_loss-- 88 tensor(0.1354, device='cuda:0')
epoch_loss-- 89 tensor(0.1348, device='cuda:0')
epoch_loss-- 90 tensor(0.1358, device='cuda:0')
epoch_loss-- 91 tensor(0.1314, device='cuda:0')
epoch_loss-- 92 tensor(0.1368, device='cuda:0')
epoch_loss-- 93 tensor(0.1358, device='cuda:0')
epoch_loss-- 94 tensor(0.1389, device='cuda:0')
epoch_loss-- 95 tensor(0.1354, device='cuda:0')
epoch_loss-- 96 tensor(0.1325, device='cuda:0')
epoch_loss-- 97 tensor(0.1289, device='cuda:0')
epoch_loss-- 98 tensor(0.1244, device='cuda:0')
epoch_loss-- 99 tensor(0.1273, device='cuda:0')
epoch_loss-- 100 tensor(0.1355, device='cuda:0')
epoch_loss-- 1 0.15234829211673037
epoch_loss-- 2 0.1609892084028203
epoch_loss-- 3 0.16170155958602794
epoch_loss-- 4 0.15841438557012394
epoch_loss-- 5 0.16434485184403655
epoch_loss-- 6 0.1561047846016983
epoch_loss-- 7 0.15430015062514585
epoch_loss-- 8 0.16487759974198982
epoch_loss-- 9 0.15918997453805356
epoch_loss-- 10 0.15323672269860777
epoch_loss-- 11 0.15445033359689453
epoch_loss-- 12 0.16306385445518615
epoch_loss-- 13 0.16328114633576368
epoch_loss-- 14 0.17035511702584763
epoch_loss-- 15 0.1528957543638758
epoch_loss-- 16 0.15386381340674318
epoch_loss-- 17 0.16286877551065465
epoch_loss-- 18 0.16019303164781093
epoch_loss-- 19 0.15928332493328057
epoch_loss-- 20 0.16091684988750438
epoch_loss-- 21 0.15956153909857282
epoch_loss-- 22 0.16130958378505403
epoch_loss-- 23 0.1568163941248347
epoch_loss-- 24 0.16075259921983026
epoch_loss-- 25 0.15434657896574314
epoch_loss-- 26 0.15834759345974403
epoch_loss-- 27 0.16648107679031146
epoch_loss-- 28 0.16036171441118177
epoch_loss-- 29 0.16127082835228299
epoch_loss-- 30 0.16621184190764976
epoch_loss-- 31 0.15868874557149676
epoch_loss-- 32 0.15697083803125844
epoch_loss-- 33 0.15507603938968037
epoch_loss-- 34 0.1595250686612754
epoch_loss-- 35 0.16135731667946704
epoch_loss-- 36 0.1592152700328027
epoch_loss-- 37 0.15463963840097283
epoch_loss-- 38 0.15253118081643177
epoch_loss-- 39 0.1586419896076853
epoch_loss-- 40 0.15274176416924587
epoch_loss-- 41 0.1551055788410643
epoch_loss-- 42 0.15109246740706814
epoch_loss-- 43 0.15299729952892174
epoch_loss-- 44 0.15564979644962393
epoch_loss-- 45 0.15087769492365682
epoch_loss-- 46 0.15757869680325826
epoch_loss-- 47 0.1566065290627388
epoch_loss-- 48 0.1472227825119663
epoch_loss-- 49 0.15302697295388476
epoch_loss-- 50 0.15183386992151365
epoch_loss-- 51 0.15571401983547134
epoch_loss-- 52 0.15550949175755818
epoch_loss-- 53 0.15703878119683112
epoch_loss-- 54 0.15535506889366876
epoch_loss-- 55 0.1583549441180576
epoch_loss-- 56 0.15280264495803525
epoch_loss-- 57 0.1598686199551954
epoch_loss-- 58 0.14549136433167198
epoch_loss-- 59 0.15738336386057897
epoch_loss-- 60 0.15363539467318751
epoch_loss-- 61 0.14849923194026032
epoch_loss-- 62 0.156399676653619
epoch_loss-- 63 0.1484852946056916
epoch_loss-- 64 0.15451186632338804
epoch_loss-- 65 0.15548789490478487
epoch_loss-- 66 0.15172740352896455
epoch_loss-- 67 0.15579805673120883
epoch_loss-- 68 0.14897415221642002
epoch_loss-- 69 0.14280533619201222
epoch_loss-- 70 0.159439610466123
epoch_loss-- 71 0.14929513866528155
epoch_loss-- 72 0.14619600588378434
epoch_loss-- 73 0.15086306900547716
epoch_loss-- 74 0.14081785532708366
epoch_loss-- 75 0.14752078857332374
epoch_loss-- 76 0.14702412224234865
epoch_loss-- 77 0.15038301398198065
epoch_loss-- 78 0.1434100233375455
epoch_loss-- 79 0.14933722329358703
epoch_loss-- 80 0.14632194254773492
epoch_loss-- 81 0.15489784054481945
epoch_loss-- 82 0.1560116826702421
epoch_loss-- 83 0.14623513633307939
epoch_loss-- 84 0.15178704016600936
epoch_loss-- 85 0.14965456964584967
epoch_loss-- 86 0.14905328980792826
epoch_loss-- 87 0.1533058670620187
epoch_loss-- 88 0.14849123406334044
epoch_loss-- 89 0.14300286963867684
epoch_loss-- 90 0.14461468498165997
epoch_loss-- 91 0.14448987124874568
epoch_loss-- 92 0.14246977804996336
epoch_loss-- 93 0.13874865597048505
epoch_loss-- 94 0.13690254865839077
epoch_loss-- 95 0.14453595880264292
epoch_loss-- 96 0.15645887348027274
epoch_loss-- 97 0.1523887844631276
epoch_loss-- 98 0.1489639145592912
epoch_loss-- 99 0.14577369532360437
epoch_loss-- 100 0.14851858252629685
epoch_loss-- 101 0.14463282921634163
epoch_loss-- 102 0.14394351502005664
epoch_loss-- 103 0.14294853192953447
epoch_loss-- 104 0.14455106290289388
epoch_loss-- 105 0.14293233434946392
epoch_loss-- 106 0.14763220354390982
epoch_loss-- 107 0.14774289086889536
epoch_loss-- 108 0.13975742875863187
epoch_loss-- 109 0.14880868362875793
epoch_loss-- 110 0.1462617507472206
epoch_loss-- 111 0.14186986714315872
epoch_loss-- 112 0.1395989347594424
epoch_loss-- 113 0.14579611847671076
epoch_loss-- 114 0.14919248138801358
epoch_loss-- 115 0.13939865929678605
epoch_loss-- 116 0.14737734591332488
epoch_loss-- 117 0.14287376977479496
epoch_loss-- 118 0.14049583300948143
epoch_loss-- 119 0.13750825047540588
epoch_loss-- 120 0.13833225141175257
epoch_loss-- 121 0.1397907902804998
epoch_loss-- 122 0.1473036383013851
epoch_loss-- 123 0.1366654619360313
epoch_loss-- 124 0.1398942969239558
epoch_loss-- 125 0.1458912283634416
epoch_loss-- 126 0.13737590309863273
epoch_loss-- 127 0.13820221084660997
epoch_loss-- 128 0.13790283117669458
epoch_loss-- 129 0.14047016686620042
epoch_loss-- 130 0.14017364182792152
epoch_loss-- 131 0.14484597744937902
epoch_loss-- 132 0.1401747318204885
epoch_loss-- 133 0.1390562888306265
epoch_loss-- 134 0.13497238003979095
epoch_loss-- 135 0.13896361911020721
epoch_loss-- 136 0.13654826279170215
epoch_loss-- 137 0.14690882858995813
epoch_loss-- 138 0.14649244214589605
epoch_loss-- 139 0.13379715977552029
epoch_loss-- 140 0.1366143688892785
epoch_loss-- 141 0.13467666668037828
epoch_loss-- 142 0.13710244958059856
epoch_loss-- 143 0.13331748205370986
epoch_loss-- 144 0.1382032640206928
epoch_loss-- 145 0.13686742640722294
epoch_loss-- 146 0.13432500265038813
epoch_loss-- 147 0.1350763416566407
epoch_loss-- 148 0.13421771948496564
epoch_loss-- 149 0.137923927578968
epoch_loss-- 150 0.14207588346264424
epoch_loss-- 151 0.1408517689893421
epoch_loss-- 152 0.13460503664974588
epoch_loss-- 153 0.12795649744427431
epoch_loss-- 154 0.13748933024966298
epoch_loss-- 155 0.139580794987968
epoch_loss-- 156 0.1342514863077063
epoch_loss-- 157 0.1393824458693544
epoch_loss-- 158 0.13498455530014664
epoch_loss-- 159 0.13636309401200603
epoch_loss-- 160 0.13159538103273502
epoch_loss-- 161 0.13057724273385712
epoch_loss-- 162 0.14570646488461822
epoch_loss-- 163 0.12474874238046213
epoch_loss-- 164 0.1332590484830994
epoch_loss-- 165 0.1307470085450445
epoch_loss-- 166 0.13542678294637903
epoch_loss-- 167 0.13931098435157405
epoch_loss-- 168 0.13247866054978996
epoch_loss-- 169 0.13672443104985232
epoch_loss-- 170 0.13666328230795388
epoch_loss-- 171 0.13296966405865102
epoch_loss-- 172 0.1347735966927708
epoch_loss-- 173 0.12959912774590449
epoch_loss-- 174 0.13305534268863284
epoch_loss-- 175 0.1300485029864235
epoch_loss-- 176 0.13687821615118378
epoch_loss-- 177 0.1308313619000272
epoch_loss-- 178 0.12878661068935934
epoch_loss-- 179 0.12941895306895906
epoch_loss-- 180 0.13511698343121586
epoch_loss-- 181 0.12646136356714055
epoch_loss-- 182 0.13572055919054218
epoch_loss-- 183 0.13587290128341878
epoch_loss-- 184 0.12475395115157857
epoch_loss-- 185 0.1303621951145486
epoch_loss-- 186 0.13147712556032326
epoch_loss-- 187 0.13297018406394953
epoch_loss-- 188 0.13198638101593374
epoch_loss-- 189 0.1304649853120787
epoch_loss-- 190 0.12556141017439265
epoch_loss-- 191 0.12761055430569967
epoch_loss-- 192 0.1282113092228437
epoch_loss-- 193 0.1304583315508434
epoch_loss-- 194 0.12747765541338502
epoch_loss-- 195 0.1274035117996577
epoch_loss-- 196 0.124838446650785
epoch_loss-- 197 0.12413256317853166
epoch_loss-- 198 0.12596989772952022
epoch_loss-- 199 0.1214964584753917
epoch_loss-- 200 0.12149590608506157
epoch_loss-- 201 0.12089481442785872
epoch_loss-- 202 0.12825638686006252
epoch_loss-- 203 0.12422369459804636
epoch_loss-- 204 0.12884931601941013
epoch_loss-- 205 0.1303771899495357
epoch_loss-- 206 0.12988510281561663
epoch_loss-- 207 0.1215947676366701
epoch_loss-- 208 0.12684047674409116
epoch_loss-- 209 0.11869783385302693
epoch_loss-- 210 0.12100285314285336
epoch_loss-- 211 0.1274762579474967
epoch_loss-- 212 0.12270804175053732
epoch_loss-- 213 0.11490496058766834
epoch_loss-- 214 0.1250941163827531
epoch_loss-- 215 0.13178765290556624
epoch_loss-- 216 0.1263654933581813
epoch_loss-- 217 0.1241682571486924
epoch_loss-- 218 0.1231271431159478
epoch_loss-- 219 0.11587315292570728
epoch_loss-- 220 0.11785020876806765
epoch_loss-- 221 0.12403430693303816
epoch_loss-- 222 0.12359990175968161
epoch_loss-- 223 0.11932347128733088
epoch_loss-- 224 0.12630866066859173
epoch_loss-- 225 0.11528732649053629
epoch_loss-- 226 0.12233486982246938
epoch_loss-- 227 0.12466449179826453
epoch_loss-- 228 0.12384179120246595
epoch_loss-- 229 0.11908453282194968
epoch_loss-- 230 0.11997665338122997
epoch_loss-- 231 0.11329661503124733
epoch_loss-- 232 0.11884556764278549
epoch_loss-- 233 0.11780190616012953
epoch_loss-- 234 0.12502558602573582
epoch_loss-- 235 0.12262029484652293
epoch_loss-- 236 0.1187449541811745
epoch_loss-- 237 0.1230022769730788
epoch_loss-- 238 0.1140388701134882
epoch_loss-- 239 0.12273393370234928
epoch_loss-- 240 0.12234401135755994
epoch_loss-- 241 0.11111399226676161
epoch_loss-- 242 0.1249933850984223
epoch_loss-- 243 0.12045723588440936
epoch_loss-- 244 0.11876447957020979
epoch_loss-- 245 0.11777695238637848
epoch_loss-- 246 0.11651118569813979
epoch_loss-- 247 0.11980097507611631
epoch_loss-- 248 0.11527339505930297
epoch_loss-- 249 0.11293165145900112
epoch_loss-- 250 0.1103295020628185
epoch_loss-- 251 0.11550157575513989
epoch_loss-- 252 0.11411383821251103
epoch_loss-- 253 0.10885754127067308
epoch_loss-- 254 0.11147668761924243
epoch_loss-- 255 0.11327608005878644
epoch_loss-- 256 0.11338624082648525
epoch_loss-- 257 0.11741757483932729
epoch_loss-- 258 0.1169590244646937
epoch_loss-- 259 0.1125440692987305
epoch_loss-- 260 0.11237989354152648
epoch_loss-- 261 0.11506434415166561
epoch_loss-- 262 0.11148743734311181
epoch_loss-- 263 0.11536902908723766
epoch_loss-- 264 0.11874715207864682
epoch_loss-- 265 0.11026448094116423
epoch_loss-- 266 0.11029623344112129
epoch_loss-- 267 0.1153141324595807
epoch_loss-- 268 0.1191964343416329
epoch_loss-- 269 0.11440073371457216
epoch_loss-- 270 0.11134450853513643
epoch_loss-- 271 0.11567835405040473
epoch_loss-- 272 0.1130519868752446
epoch_loss-- 273 0.1101292397934027
epoch_loss-- 274 0.1136031294830691
epoch_loss-- 275 0.11280466800632949
epoch_loss-- 276 0.11077825944073284
epoch_loss-- 277 0.11511526460917042
epoch_loss-- 278 0.10870901564249215
epoch_loss-- 279 0.11253256018097979
epoch_loss-- 280 0.11295342091292429
epoch_loss-- 281 0.11575006953657815
epoch_loss-- 282 0.11168666080402109
epoch_loss-- 283 0.10478857156043997
epoch_loss-- 284 0.11643643686161063
epoch_loss-- 285 0.11322704657388571
epoch_loss-- 286 0.10927915572525022
epoch_loss-- 287 0.11002242553253143
epoch_loss-- 288 0.10915953585038932
epoch_loss-- 289 0.10813491704602973
epoch_loss-- 290 0.11220455683839207
epoch_loss-- 291 0.10979037387326313
epoch_loss-- 292 0.10752386566453849
epoch_loss-- 293 0.11320885214895106
epoch_loss-- 294 0.10753220661927146
epoch_loss-- 295 0.10311322186154108
epoch_loss-- 296 0.11052330975501111
epoch_loss-- 297 0.11160137075871325
epoch_loss-- 298 0.11177253383345688
epoch_loss-- 299 0.11373588979577486
epoch_loss-- 300 0.1103680709394784