-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_model_torchscript.py
85 lines (68 loc) · 2.77 KB
/
save_model_torchscript.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import os
import glob
import torch.nn as nn
"""
Author: Magnus
Version 1.1
Goal: Generic modulation is next step -> Can load and handle an arbitrary model and path is next goal
"""
# Add the checkpoint path and filename of the model you want to load in and save as a TorchScript for deployment
source_checkpoint_dir = "./checkpoints"
source_file_name = "dcgan_medieval_checkpoint_TRUE.pt"
target_filename = "dcgan_medieval_script.pt"
target_dir = "./torch_script_db"
n_channels = 3
class G(nn.Module):
def __init__(self, nz, ngf):
super(G, self).__init__()
latent_size = nz
ngf = ngf
self.main = nn.Sequential(
nn.ConvTranspose2d(latent_size, ngf * 8, kernel_size = 4, stride = 1, padding = 0, bias = False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(inplace = True),
nn.ConvTranspose2d(ngf * 8, ngf * 4, kernel_size = 4, stride = 2, padding = 1, bias = False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(inplace = True),
nn.ConvTranspose2d(ngf * 4, ngf * 2, kernel_size = 4, stride = 2, padding = 1, bias = False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(inplace = True),
nn.ConvTranspose2d(ngf * 2, ngf, kernel_size = 4, stride = 2, padding = 1, bias = False),
nn.BatchNorm2d(ngf),
nn.ReLU(inplace = True),
nn.ConvTranspose2d(ngf, n_channels, kernel_size = 4, stride = 2, padding = 1, bias = False),
nn.Tanh()
)
def forward(self, x):
x = self.main(x)
return x
# Setup model and optimizer - NOTE: Make sure the parameters fit the original model
generator = G(nz = 100, ngf = 35)
def load_checkpoint(checkpoint_path, g_model):
checkpoint = torch.load(checkpoint_path)
if isinstance(g_model, torch.nn.DataParallel):
g_model.module.load_state_dict(checkpoint['generator_state_dict'])
else:
g_model.load_state_dict(checkpoint['generator_state_dict'])
return g_model
def find_latest_checkpoint():
checkpoints = glob.glob(os.path.join(source_checkpoint_dir, source_file_name))
if checkpoints:
latest_checkpoint = max(checkpoints, key=os.path.getctime)
return latest_checkpoint
else:
return None
# Load and save model
latest_checkpoint = find_latest_checkpoint()
if latest_checkpoint:
print("Checkpoint was found!")
generator = load_checkpoint(latest_checkpoint, generator)
os.makedirs(target_dir, exist_ok=True)
target_file_path = os.path.join(target_dir, target_filename)
model_scripted = torch.jit.script(generator)
model_scripted.save(target_file_path)
print(f"Model saved to {target_file_path}")
# NOTE: When loading the script remember to use model.eval()
else:
print("No checkpoint found.")