forked from microsoft/Deep3DFaceReconstruction
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_loader.py
75 lines (62 loc) · 2.51 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import tensorflow as tf
from tensorflow.contrib.data import prefetch_to_device, shuffle_and_repeat, map_and_batch
import os
import glob
import numpy as np
os.environ["TF_CPP_MIN_LOG_LEVEL"] = '2'
###############################################################################################
# data loader for training stage
###############################################################################################
def _parse_function(image_path,lm_path,mask_path):
# input image
x = tf.read_file(image_path)
img = tf.image.decode_png(x, channels=3)
img = tf.cast(img,tf.float32)
img = img[:,:,::-1]
# ground truth landmark
x2 = tf.read_file(lm_path)
lm = tf.decode_raw(x2,tf.float64)
lm = tf.cast(lm,tf.float32)
lm = tf.reshape(lm,[68,2])
# skin mask
x3 = tf.read_file(mask_path)
mask = tf.image.decode_png(x3, channels=3)
mask = tf.cast(mask,tf.float32)
return img,lm,mask
def check_lm_bin(dataset,lm_path):
if not os.path.isdir(os.path.join(dataset,'lm_bin')):
os.makedirs(os.path.join(dataset,'lm_bin'))
for i in range(len(lm_path)):
lm = np.loadtxt(lm_path[i])
lm = np.reshape(lm,[-1])
lm.tofile(os.path.join(dataset,'lm_bin',lm_path[i].split('/')[-1].replace('txt','bin')))
def load_dataset(opt,train=True):
if train:
data_path = opt.data_path
else:
data_path = opt.val_data_path
image_path_all = []
lm_path_all = []
mask_path_all = []
for dataset in data_path:
image_path = glob.glob(dataset + '/' + '*.png')
image_path.sort()
lm_path_ = [os.path.join(dataset,'lm',f.split('/')[-1].replace('png','txt')) for f in image_path]
lm_path_.sort()
mask_path = [os.path.join(dataset,'mask',f.split('/')[-1]) for f in image_path]
mask_path.sort()
# check if landmark binary files exist
check_lm_bin(dataset,lm_path_)
lm_path = [os.path.join(dataset,'lm_bin',f.split('/')[-1].replace('png','bin')) for f in image_path]
lm_path.sort()
image_path_all += image_path
mask_path_all += mask_path
lm_path_all += lm_path
dataset_num = len(image_path_all)
dataset = tf.data.Dataset.from_tensor_slices((image_path_all,lm_path_all,mask_path_all))
dataset = dataset. \
apply(shuffle_and_repeat(dataset_num)). \
apply(map_and_batch(_parse_function, opt.batch_size, num_parallel_batches=4, drop_remainder=True)). \
apply(prefetch_to_device('/gpu:0', None)) # When using dataset.prefetch, use buffer_size=None to let it detect optimal buffer size
inputs_iterator = dataset.make_one_shot_iterator()
return inputs_iterator