-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpsnr.py
34 lines (26 loc) · 990 Bytes
/
psnr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import cv2
import math
import numpy
def psnr(target, ref):
# assume RGB image
target_data = numpy.array(target, dtype=float)
ref_data = numpy.array(ref, dtype=float)
diff = ref_data - target_data
diff = diff.flatten('C')
rmse = math.sqrt(numpy.mean(diff ** 2.))
return 20 * math.log10(255. / rmse)
if __name__ == "__main__":
im1 = cv2.imread("./input.jpg", cv2.IMREAD_COLOR)
im1 = cv2.cvtColor(im1, cv2.COLOR_BGR2YCrCb)[6: -6, 6: -6, 0]
im2 = cv2.imread("./butterfly_GT.bmp", cv2.IMREAD_COLOR)
im2 = cv2.cvtColor(im2, cv2.COLOR_BGR2YCrCb)[6: -6, 6: -6, 0]
im3 = cv2.imread("pre_adam2000.jpg", cv2.IMREAD_COLOR)
im3 = cv2.cvtColor(im3, cv2.COLOR_BGR2YCrCb)[6: -6, 6: -6, 0]
im4 = cv2.imread("./pre.jpg", cv2.IMREAD_COLOR)
im4 = cv2.cvtColor(im4, cv2.COLOR_BGR2YCrCb)[6: -6, 6: -6, 0]
print("adam:")
print(psnr(im2, im3))
print("bicubic:")
print(psnr(im2, im1))
print("SRCNN:")
print(psnr(im2, im4))