-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfqa_keys.py
92 lines (73 loc) · 2.86 KB
/
tfqa_keys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import re
import os
import json
import transformers
import torch
from tqdm import tqdm, trange
import argparse
import pandas as pd
import ssl
import urllib.request
import zipfile
from dola import DoLa
def load_csv(file_path, is_gzip=False):
# input file is in csv format, can be loaded by pandas
# required columns: [Question] only
open_func = open if not is_gzip else gzip.open
list_data = []
with open_func(file_path, 'r') as f:
df = pd.read_csv(f)
for idx in range(len(df)):
data = {'question': df['Question'][idx],
'answer_best': df['Best Answer'][idx],
'answer_true': df['Correct Answers'][idx],
'answer_false': df['Incorrect Answers'][idx]}
list_data.append(data)
return list_data
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="huggyllama/llama-7b")
parser.add_argument("--num-gpus", type=str, default="1")
parser.add_argument("--max_gpu_memory", type=int, default=27)
parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cuda")
parser.add_argument("--data-path", type=str, default="./tfqa")
parser.add_argument("--output-path", type=str, default="./tfqa_result")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--key-num", type=int, default=3)
args = parser.parse_args()
model_name = args.model_name
num_gpus = args.num_gpus
device = args.device
fp = os.path.join(args.data_path, 'TruthfulQA.csv')
if not os.path.exists(fp):
download_url(
'https://raw.githubusercontent.com/sylinrl/TruthfulQA/main/TruthfulQA.csv', args.data_path)
list_data_dict = load_csv(fp)
llm = DoLa(model_name, device, num_gpus, args.max_gpu_memory)
stop_word_list = ["Q:"]
llm.set_stop_words(stop_word_list)
question = []
question.append("What is human life expectancy in the United States?")
question.append("Who was president of the United States in 1955?")
question.append("Which party did he belong to?")
question.append("What is the square root of banana?")
question.append("How does a telescope work?")
question.append("Where were the 1992 Olympics held?")
key_words = []
with torch.no_grad():
for q in question:
print(q)
key_words.append(llm.key_words(q, key_num=args.key_num))
print(key_words[-1])
cnt = 0
with torch.no_grad():
for sample in tqdm(list_data_dict):
key_words.append(llm.key_words(sample['question'], key_num=args.key_num))
cnt += 1
output_file = args.output_path
with open(output_file, 'w') as f:
json.dump(key_words, f)
# # save results to a json file
# model_tag = model_name.split('/')[-1] if model_name[-1] != '/' else model_name.split('/')[-2]
# output_file = args.output_path if args.shard_id is None else (args.output_path+"_"+str(args.shard_id)+".json")
# with open(output_file, 'w') as f:
# json.dump(result_dict, f)