-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfactor_eval.py
300 lines (259 loc) · 14.4 KB
/
factor_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Ref: https://github.com/kojima-takeshi188/zero_shot_cot
import re
import os
import json
import random
import torch
import numpy as np
import pandas as pd
import transformers
from tqdm import tqdm, trange
import argparse
import ssl
import urllib.request
from modeling import SH2
transformers.logging.set_verbosity(40)
ANS_RE = re.compile(r"#### (\-?[0-9\.\,]+)")
INVALID_ANS = "[invalid]"
N_SHOT = 8
COT_FLAG = True
DEBUG = True
ANSWER_TRIGGER = "The answer is"
def load_csv(file_path, pondering=None, keys_path=None):
# Format of each line:
# {'instruction': ..., 'input': ..., 'output':...}
'''
Data format:
,full_prefix,doc_id,completion,contradiction_0,contradiction_1,contradiction_2,longest_completions,turncated_prefixes
0,"As streaming television services continue to gain market share, there are a number of reasons why Netflix might be in trouble. Time Warner is taking its HBO content online, Amazon offers premium content for a monthly fee, and Hulu has reached nine million users. While these competitors may cause a bit of worry, it’s not the end of the world. Although Netflix has a huge amount of potential, the increased competition is unlikely to hurt its profitability.
While the global pandemic last year caused a major shakeup in Hollywood, Netflix should not rest on its laurels. With a variety of rivals on the rise, it’s unlikely that it can continue to rely on its current performance. Despite the competition, the company has made a number of impactful moves across the board, including clamping down on password sharing. And in the coming years, Netflix should continue to grow and compete with new competitors.
With more competitors entering the streaming space, Netflix is likely to face a more difficult time keeping its current market share. Disney has been investing heavily in the service and Amazon is expected to do the same. Both companies expect to add 35-40 million subscribers per year through 2024. Despite the competition, Netflix still remains the top streaming service. Its lack of original content has hurt its numbers in the last few quarters. Its only big original hit in the US was Cobra Kai, which only got four seasons. ",0,Whether or not it gets a second season of The Witcher is another question.,Whether or not it gets a second season of Stranger Things is another question.,Whether or not it gets a fifth season of The Witcher is another question.,Whether or not it gets a second season of Black Mirror is another question.,15.0,"As streaming television services continue to gain market share, there are a number of reasons why Netflix might be in trouble. Time Warner is taking its HBO content online, Amazon offers premium content for a monthly fee, and Hulu has reached nine million users. While these competitors may cause a bit of worry, it’s not the end of the world. Although Netflix has a huge amount of potential, the increased competition is unlikely to hurt its profitability.
While the global pandemic last year caused a major shakeup in Hollywood, Netflix should not rest on its laurels. With a variety of rivals on the rise, it’s unlikely that it can continue to rely on its current performance. Despite the competition, the company has made a number of impactful moves across the board, including clamping down on password sharing. And in the coming years, Netflix should continue to grow and compete with new competitors.
With more competitors entering the streaming space, Netflix is likely to face a more difficult time keeping its current market share. Disney has been investing heavily in the service and Amazon is expected to do the same. Both companies expect to add 35-40 million subscribers per year through 2024. Despite the competition, Netflix still remains the top streaming service. Its lack of original content has hurt its numbers in the last few quarters. Its only big original hit in the US was Cobra Kai, which only got four seasons. "
'''
if args.keys_path is not None:
with open(args.keys_path, "r", encoding="utf-8") as f:
key_words = json.load(f)
list_data_dict = []
df = pd.read_csv(file_path)
# if 'news' in file_path:
# prefix_type = 'full_prefix'
# else:
prefix_type = 'turncated_prefixes'
for idx in range(len(df)):
item = dict(
prefix=df[prefix_type][idx],
completion=df['completion'][idx],
contradiction_0=df['contradiction_0'][idx],
contradiction_1=df['contradiction_1'][idx],
contradiction_2=df['contradiction_2'][idx],
)
if pondering == 'pause':
item['prefix'] = "\nPondering: " + "." * args.pause_num + "\n\nContext:" + item['prefix']
elif pondering == 'repeat':
item['prefix'] = "\nPondering: " + item['prefix'] + "\n\nContext:" + item['prefix']
elif pondering == 'hard':
if keys_path is not None:
item['prefix'] = "Pondering: " + key_words[idx] + "\n\nContext:" + item['prefix']
list_data_dict.append(item)
return list_data_dict
def download_url(url: str, folder='folder'):
"""
Downloads the content of an url to a folder. Modified from \
https://github.com/pyg-team/pytorch_geometric/tree/master/torch_geometric
Args:
url (string): The url of target file.
folder (string): The target folder.
Returns:
string: File path of downloaded files.
"""
file = url.rpartition('/')[2]
file = file if file[0] == '?' else file.split('?')[0]
path = os.path.join(folder, file)
if os.path.exists(path):
print(f'File {file} exists, use existing file.')
return path
print(f'Downloading {url}')
os.makedirs(folder, exist_ok=True)
ctx = ssl._create_unverified_context()
data = urllib.request.urlopen(url, context=ctx)
with open(path, 'wb') as f:
f.write(data.read())
return path
def extract_answer_from_output(completion):
match = ANS_RE.search(completion)
if match:
match_str = match.group(1).strip()
match_str = match_str.replace(",", "")
return match_str
else:
return INVALID_ANS
def is_correct(model_answer, answer):
gt_answer = extract_answer_from_output(answer)
assert gt_answer != INVALID_ANS
return model_answer == gt_answer
def clean_answer(model_pred):
model_pred = model_pred.lower()
preds = model_pred.split(ANSWER_TRIGGER.lower())
answer_flag = True if len(preds) > 1 else False
if answer_flag:
# Pick first answer with flag
pred = preds[1]
else:
# Pick last number without flag
pred = preds[-1]
pred = pred.replace(",", "")
pred = [s for s in re.findall(r'-?\d+\.?\d*', pred)]
if len(pred) == 0:
return INVALID_ANS
if answer_flag:
# choose the first element in list
pred = pred[0]
else:
# choose the last element in list
pred = pred[-1]
# (For arithmetic tasks) if a word ends with period, it will be omitted ...
if pred[-1] == ".":
pred = pred[:-1]
return pred
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="huggyllama/llama-7b")
parser.add_argument("--num-gpus", type=str, default="1")
parser.add_argument("--max_gpu_memory", type=int, default=27)
parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cuda")
parser.add_argument("--data-path", type=str, default="./gsm8k")
parser.add_argument("--output-path", type=str, default="./gsm8k_result")
# parallel mode (split the dataset into multiple parts, inference by separate processes)
parser.add_argument("--early-exit-layers", type=str, default="-1")
parser.add_argument("--parallel", action="store_true")
parser.add_argument("--total-shard", type=int, default=8)
parser.add_argument("--shard-id", type=int, default=None)
parser.add_argument("--max-new-tokens", type=int, default=256)
parser.add_argument("--top_p", type=float, default=0.95)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.9)
parser.add_argument("--repetition_penalty", type=float, default=1.0)
parser.add_argument("--relative_top", type=float, default=0.1)
parser.add_argument("--relative_top_value", type=float, default=-1000.0)
parser.add_argument("--do_sample", action="store_true")
parser.add_argument("--do_shuffle", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--retry", type=int, default=1)
parser.add_argument("--keys-path", type=str, default=None)
parser.add_argument("--pondering", type=str, default=None)
parser.add_argument("--pause-num", type=int, default=3)
parser.add_argument("--alpha", type=float, default=10)
args = parser.parse_args()
model_name = args.model_name
num_gpus = args.num_gpus
device = args.device
# Get test file
fp = args.data_path
if not os.path.exists(fp):
raise ValueError(f"Test file {fp} does not exist.")
list_data_dict = load_csv(fp)
if args.parallel:
chunk_size = len(list_data_dict) // args.total_shard
list_data_dict = list_data_dict[args.shard_id * chunk_size: (args.shard_id + 1) * chunk_size]
if args.debug:
list_data_dict = list_data_dict[:10]
if args.pondering is not None:
list_data_dict_keys = load_csv(fp, pondering=args.pondering, keys_path=args.keys_path)
if args.parallel:
chunk_size = len(list_data_dict_keys) // args.total_shard
list_data_dict_keys = list_data_dict_keys[args.shard_id * chunk_size: (args.shard_id + 1) * chunk_size]
llm = SH2(model_name, device, num_gpus, args.max_gpu_memory)
llm.set_stop_words(["Q:", "\end{code}"])
early_exit_layers = [int(x) for x in args.early_exit_layers.split(',')]
if len(early_exit_layers) == 1:
print("MODE: naive decoding from the last layer", flush=True)
mode = "baseline"
mature_layer = None
premature_layer = None
candidate_premature_layers = None
elif len(early_exit_layers) == 2:
print(f"MODE: DoLa-static decoding with mature layer: {early_exit_layers[1]} and premature layer: {early_exit_layers[0]}")
mode = "dola-static"
mature_layer = early_exit_layers[1]
premature_layer = early_exit_layers[0]
candidate_premature_layers = None
else:
print(f"MODE: DoLa decoding with mature layer: {early_exit_layers[-1]} and premature layers: {early_exit_layers[:-1]}")
mode = "dola"
mature_layer = early_exit_layers[-1]
premature_layer = None
candidate_premature_layers = early_exit_layers[:-1]
premature_layer_dist = {l:0 for l in candidate_premature_layers}
answers = []
result_dict = {'is_correct': [], 'model_answer': [], 'model_completion': [], 'full_input_text': []}
generate_kwargs = dict(max_new_tokens=args.max_new_tokens,
do_sample=args.do_sample,
top_p=args.top_p,
top_k=args.top_k,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
mode=mode,
mature_layer=mature_layer,
premature_layer=premature_layer,
candidate_premature_layers=candidate_premature_layers,
relative_top=args.relative_top,
relative_top_value=args.relative_top_value,
pondering=args.pondering,
alpha=args.alpha)
for idx in tqdm(range(len(list_data_dict))):
sample = list_data_dict[idx]
if args.pondering is None:
input_text_keys = None
else:
sample_keys = list_data_dict_keys[idx]
input_text_keys = sample_keys['prefix']
context = sample['prefix']
answer_true = ' ' + sample['completion']
answers_false = []
for i in range(3):
answers_false.append(' ' + sample[f'contradiction_{i}'])
answer_true_log_prob, c_dist = llm.lm_score(context, answer_true, input_text1_keys=input_text_keys, **generate_kwargs)
if mode == "dola":
for k, v in c_dist.items():
premature_layer_dist[k] += v
answer_false_log_probs = []
for answer_false in answers_false:
answer_false_log_prob, c_dist = llm.lm_score(context, answer_false, input_text1_keys=input_text_keys, **generate_kwargs)
if mode == "dola":
for k, v in c_dist.items():
premature_layer_dist[k] += v
answer_false_log_probs.append(answer_false_log_prob)
if args.debug:
print(f'log prob of answers: {answer_true_log_prob}', end=' ')
for answer_false_log_prob in answer_false_log_probs:
print(f'{answer_false_log_prob}', end=' ')
print()
is_cor = True
for answer_false_log_prob in answer_false_log_probs:
if answer_true_log_prob < answer_false_log_prob:
is_cor = False
break
answers.append(is_cor)
result_dict['is_correct'].append(is_cor)
result_dict['model_completion'].append([answer_true_log_prob] + answer_false_log_probs)
print(f'Num of total question: {len(answers)}, '
f'correct num: {sum(answers)}, '
f'correct rate: {float(sum(answers))/len(answers)}.')
if mode == "dola" and args.debug:
total_tokens = sum(premature_layer_dist.values())
if total_tokens > 0:
for l in candidate_premature_layers:
print('Premature layer {0} was used {1} times, {2}%'.format(l, premature_layer_dist[l], round(premature_layer_dist[l] / total_tokens * 100, 2)))
# save results to a json file
model_tag = model_name.split('/')[-1] if model_name[-1] != '/' else model_name.split('/')[-2]
output_file = args.output_path if args.shard_id is None else (args.output_path+"_"+str(args.shard_id)+".json")
with open(output_file, 'w') as f:
json.dump(result_dict, f)
print(f"{float(sum(answers))/len(answers)}")